Acta Neuropharmacologica ›› 2012, Vol. 2 ›› Issue (4): 47-57.
Previous Articles Next Articles
WANG Jiu-Qiang1, ZHU Shu1, ZHU Xue-Fei1, GUO Cai-Xia2, TANG Tie-Shan1
Online:
2012-08-26
Published:
2014-06-27
Contact:
唐铁山,guocx@big.ac.cn, tangtsh@ioz.ac.cn
Supported by:
科技部重大科学计划(No.2011CB965003、 No.2011CB944302、No.2012CB944702),国家自然科学基金 (No.30970588、No.31170730、No.81371415) 和中科院百人计划项目的支持
CLC Number:
WANG Jiu-Qiang, ZHU Shu, ZHU Xue-Fei, GUO Cai-Xia, TANG Tie-Shan. Role of Mitochondrial Dysfunction in Huntington’s Disease[J]. Acta Neuropharmacologica, 2012, 2(4): 47-57.
[1] G Vonsattel, Jean Paul, Difiglia Marian. Huntington disease [J]. J Neuropathol Experl Neurol, 1998, 57(5): 369-384.[2] Schwarcz Robert, Whetsell William O, Mangano Richard M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain [J]. Science, 1983, 219(4582): 316-318.[3] M Flint Beal, Emmanuel Brouillet, Bruce G Jenkins, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid [J]. J Neurosci, 1993, 13(10): 4181-4192.[4] Damiano Maria, Galvan Laurie, Déglon Nicole, et al. Mitochondria in Huntington's disease [J]. Biochim Biophys Acta, 2010, 1802(1): 52-61.[5] Mangiarini Laura, Sathasivam Kirupa, Seller Mary, et al. Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice [J]. Cell, 1996, 87(3): 493-506.[6] Levine Michael S, Klapstein Gloria J, Koppel Ahrin, et al. Enhanced sensitivity to N‐methyl‐D‐aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease [J]. J Neurosci Res, 1999, 58(4): 515-532.[7] Turmaine Mark, Raza Aysha, Mahal Amarbirpal, et al. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease [J]. Proceed National Acad Science, 2000, 97(14): 8093-8097.[8] Davies Stephen W, Turmaine Mark, Cozens Barbara A, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J]. Cell, 1997, 90(3): 537-548.[9] Hodgson J Graeme, Agopyan Nadia, Gutekunst Claire-Anne, et al. A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration [J]. Neuron, 1999, 23(1): 181-192.[10] Slow Elizabeth J, Van Raamsdonk Jeremy, Rogers Daniel, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease [J]. Hum Mol Genet, 2003, 12(13): 1555-1567.[11] Hackenbrock Charles R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria [J]. J Cell Biol, 1966, 30(2): 269-297.[12] Benard Giovanni, Rossignol Rodrigue. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics [J]. Antioxid Redox Signal, 2008, 10(8): 1313-1342.[13] Yu Tian-zheng, Robotham James L, Yoon Yisang. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology [J]. Proc Natl Acad Sci USA, 2006, 103(8): 2653-2658.[14] Wasilewski Micha, Scorrano Luca. The changing shape of mitochondrial apoptosis [J]. Trends Endocrinol Metab, 2009, 20(6): 287-294.[15] Tellez-Nagel Isabel, Johnson Anne B, Terry Robert D. Studies on brain biopsies of patients with Huntington's chorea [J]. J Neuropathol Exp Neurol, 1974, 33(2): 308-332.[16] Goebel Hans H, Heipertz Rainald, Scholz Wolfgang, et al. Juvenile Huntington chorea Clinical, ultrastructural, and biochemical studies [J]. Neurology, 1978, 28(1): 23-23.[17] Carios Portera-Cailliau, John C Hedreen, Donald L Price, et al. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models [J]. J Neurosci, 1995, 15(5): 3775-3787.[18] Squitieri Ferdinando, Falleni Alessandra, Cannella Milena, et al. Abnormal morphology of peripheral cell tissues from patients with Huntington disease [J]. J Neural Transm, 2010, 117(1): 77-83.[19] Squitieri Ferdinando, Cannella Milena, Sgarbi Gianluca, et al. Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation [J]. Mech Ageing Dev, 2006, 127(2): 217-220.[20] Costa Veronica, Giacomello Marta, Hudec Roman, et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli [J]. EMBO Mol Med, 2010, 2(12): 490-503.[21] Song Wen-jun, Chen Jin, Petrilli Alejandra, et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity [J]. Nat Med, 2011, 17(3): 377-382.[22] Kim Jinho, Moody Jennifer P, Edgerly Christina K, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease [J]. Hum Mol Genet, 2010, 19(20): 3919-3935.[23] Shirendeb Ulziibat, Reddy Arubala P, Manczak Maria, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage [J]. Hum Mol Genet, 2011, 20(7): 1438-1455.[24] G M Cereghetti, A Stangherlin, O Martins De Brito, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria [J]. Proceed National Acade Sciences, 2008, 105(41): 15803-15808.[25] Frezza Christian, Cipolat Sara, Martins De Brito Olga, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion [J]. Cell, 2006, 126(1): 177-189.[26] Costa Veronica, Scorrano Luca. Shaping the role of mitochondria in the pathogenesis of Huntington's disease [J]. EMBO J, 2012, 31(8): 1853-1864.[27] Germain Marc, Mathai Jaigi P, Mcbride Heidi M, et al. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis [J]. EMBO J, 2005, 24(8): 1546-1556.[28] Wang Hong-min, Lim Precious J, Karbowski Mariusz, et al. Effects of overexpression of huntingtin proteins on mitochondrial integrity [J]. Hum Mol Genet, 2009, 18(4): 737-752.[29] Chen Hsiuchen, Detmer Scott A, Ewald Andrew J, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J]. J Cell Biol, 2003, 160(2): 189-200.[30] Napoli Eleonora, Wong Sarah, Hung Connie, et al. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease [J]. Hum Mol Genet, 2013, 22(5): 989-1004.[31] L Djousse, B Knowlton, La Cupples, et al. Weight loss in early stage of Huntington’s disease [J]. Neurology, 2002, 59(9): 1325-1330.[32] A Antonini, K L Leenders, R Spiegel, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease [J]. Brain, 1996, 119(6): 2085-2095.[33] Jenkins Bruce G, Koroshetz Walter J, Beal M Flint, et al. Evidence for irnnairment of energy metabofism in vivo in Huntington's disease using localized 1H NMR spectroscopy [J]. Neurology, 1993, 43(12): 2689-2689.[34] Lodi R, Schapira Ahv, Manners D, et al. Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy [J]. Ann Neurol, 2000, 48(1): 72-76.[35] Saft Carsten, Zange Jochen, Andrich Jürgen, et al. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease [J]. Movement disorders, 2005, 20(6): 674-679.[36] Seong Ihn Sik, Ivanova Elena, Lee Jong-Min, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism [J]. Hum Mol Genet, 2005, 14(19): 2871-2880.[37] Browne Susan E, Ferrante Robert J, Beal M Flint. Oxidative stress in Huntington's disease [J]. Brain Pathology, 1999, 9(1): 147-163.[38] Van Der Burg Jorien Mm, Bacos Karl, Wood Nigel I, et al. Increased metabolism in the R6/2 mouse model of Huntington’s disease [J]. Neurobiol Dis, 2008, 29(1): 41-51.[39] K L Leenders, Rsj Frackowiak, N Quinn, et al. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography [J]. Movement disorders, 1986, 1(1): 69-77.[40] Parker William Davis, Boyson Sally J, Luder Anthony S, et al. Evidence for a defect in NADH ubiquinone oxidoreductase (complex I) in Huntington's disease [J]. Neurology, 1990, 40(8): 1231-1231.[41] Browne Susan E, Bowling Allen C, Macgarvey Usha, et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia [J]. Ann Neurol, 1997, 41(5): 646-653.[42] Arenas Joaquín, Campos Yolanda, Ribacoba René, et al. Complex I defect in muscle from patients with Huntington's disease [J]. Ann Neurol, 1998, 43(3): 397-400.[43] Brennan William A, Bird Edward D, Aprille June R. Regional mitochondrial respiratory activity in Huntington's disease brain [J]. J Neurochem, 1985, 44(6): 1948-1950.[44] M Gu, M T Gash, V M Mann, et al. Mitochondrial defect in Huntington's disease caudate nucleus [J]. Ann Neurol, 1996, 39(3): 385-389.[45] Benchoua Alexandra, Trioulier Yael, Zala Diana, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin [J]. Mol Biol Cell, 2006, 17(4): 1652-1663.[46] S J Tabrizi, J Workman, P E Hart, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse [J]. Ann Neurol, 2000, 47(1): 80-86.[47] Lin Jiandie, Handschin Christoph, Spiegelman Bruce M. Metabolic control through the PGC-1 family of transcription coactivators [J]. Cell Metab, 2005, 1(6): 361-370.[48] P Puigserver. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α [J]. Int J Obes, 2005, 29: S5-S9.[49] Yoon J Cliff, Puigserver Pere, Chen Guoxun, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 [J]. Nature, 2001, 413(6852): 131-138.[50] Cui Li-bin, Jeong Hyunkyung, Borovecki Fran, et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration [J]. Cell, 2006, 127(1): 59-69.[51] Weydt Patrick, Pineda Victor V, Torrence Anne E, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration [J]. Cell Metab, 2006, 4(5): 349-362.[52] Chaturvedi Rajnish K, Adhihetty Peter, Shukla Shubha, et al. Impaired PGC-1α function in muscle in Huntington's disease [J]. Hum Mol Genet, 2009, 18(16): 3048-3065.[53] Johri Ashu, Starkov Anatoly A, Chandra Abhishek, et al. Truncated peroxisome proliferator-activated receptor-γ coactivator 1α splice variant is severely altered in huntington’s disease [J]. Neurodegener Dis, 2011, 8(6): 496-503.[54] Taherzadeh-Fard Elahe, Saft Carsten, Andrich Jürgen, et al. PGC-1alpha as modifier of onset age in Huntington disease [J]. Mol Neurodegener, 2009, 4:10.[55] Weydt Patrick, Soyal Selma M, Gellera Cinzia, et al. The gene coding for PGC-1α modifies age at onset in Huntington's disease [J]. Mol Neurodegener, 2009, 4: 3.[56] Rodgers Joseph T, Lerin Carlos, Haas Wilhelm, et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 [J]. Nature, 2005, 434(7029): 113-118.[57] Wu Zhi-dan, Huang Xue-ming, Feng Ya-jun, et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells [J]. Proceed National Academy Sciences, 2006, 103(39): 14379-14384.[58] Johri Ashu, Calingasan Noel Y, Hennessey Thomas M, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease [J]. Hum Mol Genet, 2012, 21(5): 1124-1137.[59] Brouillet Emmanuel, Jacquard Carine, Bizat Nicolas, et al. 3‐Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease [J]. J Neurochem, 2005, 95(6): 1521-1540.[60] Charvin Delphine, Vanhoutte Peter, Pagès Christiane, et al. Unraveling a role for dopamine in Huntington’s disease: the dual role of reactive oxygen species and D2 receptor stimulation [J]. Proc Natl Acad Sci USA, 2005, 102(34): 12218-12223.[61] Tang Tie-Shan, Chen Xi, Liu Jing, et al. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease [J]. J Neurosci, 2007, 27(30): 7899-7910.[62] Benchoua Alexandra, Trioulier Yael, Diguet Elsa, et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II [J]. Hum Mol Genet, 2008, 17(10): 1446-1456.[63] Choo Yeun Su, Johnson Gail Vw, Macdonald Marcy, et al. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release [J]. Hum Mol Genet, 2004, 13(14): 1407-1420.[64] Panov Alexander V, Gutekunst Claire-Anne, Leavitt Blair R, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines [J]. Nat Neurosci, 2002, 5(8): 731-736.[65] N Brustovetsky, R Lafrance, K J Purl, et al. Age‐dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington’s disease [J]. J Neurochem, 2005, 93(6): 1361-1370.[66] Wang Jiu-Qiang, Chen Qian, Wang Xian-hua, et al. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease [J]. J Biological Chemist, 2013, 288(5): 3070-3084.[67] Tang Tie-Shan, Tu Hui-ping, Chan Edmond Yw, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1 [J]. Neuron, 2003, 39(2): 227-239.[68] Fan Mannie My, Raymond Lynn A. N-Methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease [J]. Prog Neurobiol, 2007, 81(5): 272-293.[69] Stack Edward C, Ferrante Robert J. Huntington’s disease: progress and potential in the field [J]. Expert Opin Investig, 2007, 16(12):1933-1953.[70] Sun Ying, Savanenin Anneli, Reddy P Hemachandra, et al. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95 [J]. J Biol Chem, 2001, 276(27): 24713-24718.[71] Zeron Melinda M, Hansson Oskar, Chen Nansheng, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease [J]. Neuron, 2002, 33(6): 849-860.[72] Zeron Melinda M, Chen Nan-sheng, Moshaver Ali, et al. Mutant huntingtin enhances excitotoxic cell death [J]. Mol Cell Neurosci, 2001, 17(1): 41-53.[73] Deckel A Wallace, Gordinier Ava, Nuttal Diane, et al. Reduced activity and protein expression of NOS in R6/2 HD transgenic mice: effects of L-NAME on symptom progression [J]. Brain Res, 2001, 919(1): 70-81.[74] Pérez-Severiano Francisca, Escalante Bruno, Vergara Paula, et al. Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington’s disease mutation [J]. Brain Res, 2002, 951(1): 36-42.[75] Santamaría Abel, Pérez-Severiano Francisca, Rodríguez-Martínez Erika, et al. Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington’s disease [J]. Neurochem Res, 2001, 26(4): 419-424.[76] Rebec George V, Barton Scott J, Ennis Michelle D. Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene [J]. J Neurosci, 2002, 22(2): RC202.[77] Pérez-Severiano Francisca, Salvatierra-Sánchez Raquel, Rodriguez-Pérez Mayra, et al. S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits [J]. Eur J Pharmacol, 2004, 489(3): 197-202.[78] S J Tabrizi, M W J Cleeter, J Xuereb, et al. Biochemical abnormalities and excitotoxicity in Huntington’s disease brain [J]. Ann Neurol, 1999, 45(1): 25-32.[79] Alam Zafar I, Halliwell Barry, Jenner Peter. No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington’s disease [J]. J Neurochem, 2000, 75(2): 840-846.[80] Chen Chiung-mei, Wu Yih-ru, Cheng Mei-ling, et al. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients [J]. Biochem Biophys Res Commun, 2007, 359(2): 335-340.[81] Sadagurski Marianna, Cheng Zhi-yong, Rozzo Aldo, et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease [J]. J Clin Invest, 2011, 121(10): 4070-4081.[82] Valencia Antonio, Sapp Ellen, Kimm Jeffrey S, et al. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington’s disease [J]. Hum Mol Genet, 2013, 22(6): 1112-1131.[83] Sawa Akira, Wiegand Gordon W, Cooper Jillian, et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization [J]. Nat Med, 1999, 5(10): 1194-1198.[84] Ciammola A, Sassone J, Alberti L, et al. Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington’s disease subjects [J]. Cell Death & Differentiation, 2006, 13(12): 2068-2078.[85] Toshiyuki Miyashita, Reed John C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene [J]. Cell, 1995, 80(2): 293-299.[86] Polyak Kornelia, Xia Yong, Zweier Jay L, et al. A model for p53-induced apoptosis [J]. Nature, 1997, 389(6648): 300-305.[87] Bae Byoung-Il, Xu Hong, Igarashi Shuichi, et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease [J]. Neuron, 2005, 47(1): 29-41.[88] Tait Stephen Wg, Green Douglas R. Mitochondria and cell death: outer membrane permeabilization and beyond [J]. Nature Reviews Molecular Cell Biology, 2010, 11(9): 621-632.[89] Karbowski Mariusz, Lee Yang-Ja, Gaume Brigitte, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis [J]. J Cell Biol, 2002, 159(6): 931-938.[90] Brooks Craig, Wei Qing-qing, Feng Le-ping, et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins [J]. Proceed National Acad Sciences, 2007, 104(28): 11649-11654.[91] Berman Sarah B, Chen Ying-Bei, Qi Bing, et al. Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons [J]. J Cell Biol, 2009, 184(5): 707-719.[92] Crompton Martin, Virji Sukaina, Doyle Veronica, et al. The mitochondrial permeability transition pore and its role in cell death [J]. Biochem J, 1999, 341(Pt 2): 233-249.[93] Scorrano Luca, Oakes Scott A, Opferman Joseph T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis [J]. Science, 2003, 300(5616): 135-139.[94] Gizatullina Zemfira Z, Lindenberg Katrin S, Harjes Phoebe, et al. Low stability of Huntington muscle mitochondria against Ca2+ in R6/2 mice [J]. Ann Neurol, 2006, 59(2): 407-411.[95] Fernandes Herman B, Baimbridge Kenneth G, Church John, et al. Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington’s disease [J]. J Neurosci, 2007, 27(50): 13614-13623.[96] Zeron Melinda M, Fernandes Herman B, Krebs Claudia, et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease [J]. Mol Cell Neurosci, 2004, 25(3): 469-479.[97] Johri Ashu, Chandra Abhishek, Flint Beal M. PGC-1α, mitochondrial dysfunction and huntington’s disease [J]. Free Radic Biol Med, 2013, 2013, 62:37-46.[98] Tang Tie-Shan, Guo Cai-xia, Wang Hong-yu, et al. Neuroprotective effects of inositol 1, 4, 5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model [J]. J Neurosci, 2009, 29(5): 1257-1266.[99] Tang Tie-Shan, Slow Elizabeth, Lupu Vitalie, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease [J]. Proc Natl Acad Sci USA, 2005, 102(7): 2602-2607. |
[1] | XIE bin, HUANG Zhi-yuan, LIN Duo-duo, YANG Fu-long, XIE Yi-bin. Effect of Acupuncture Combined with Medicine on Depressive Symptoms of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 5-8. |
[2] | SUN Li-cong, ZHANG Dan-shen. Research Progress on Potential Treatment of Alzheimer’s Disease with Alkaloids [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 33-37. |
[3] | WANG Si-yi, LI Xian-xiang, LIU Yi-zhou, DU Shuang, GE Chao, LIU Si-si. Current Situation and Prospect of Alzeimer’s Disease Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 38-42. |
[4] | ZHAO Yu-wei, ZHEN Yan-jie, DAI Yue-ying, SHEN Li-xia. Study on the Neuroprotective Mechanism of Quercetin in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 55-64. |
[5] | HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64. |
[6] | ZHANG Hao-ting, SONG Gui-qin, CUI Ruo-tong, HAO Min, WANG Wen-dong. Mining Target Genes of Alzheimer’s Disease Associated with Biological Clock by Bioinformatics Analysis [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 1-7. |
[7] | YANG Xu-hua, DU Shuang, SHEN Li-xia, HAO Jun-rong. Research Progress in Drug Treatment of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 47-53. |
[8] | ZHENG Bei-bei, FENG Shuo, GUO Meng-yuan, FENG Pu, CEN Juan, ZHANG Feng. The Role of Reactive Oxygen Species in Promoting Angiogenesis and Its Important Role in Intracerebral Diseases [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 24-28. |
[9] | ZHEN Yan-jie, GUO Tong-lin, ZHAO Yu-wei, SHEN Li-xia. Study Progress on Phytoestrogen-Mediated Mitochondrial Pathway’s Neuroprotective Effects in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 40-46. |
[10] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[11] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[12] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[13] | YUE Zhong-bao, YOU Jia,LI Zhuo-ming,CHEN Shao-rui,LIU Pei-qing. SIRT3: A Potential Target for CHF? [J]. Acta Neuropharmacologica, 2018, 8(5): 80-81. |
[14] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[15] | YU Li-li1,2,XU Li1,WANG Yi-nuo1,XUE Lu-ning1,Gou Ji-wei1,LI Hong-bo1,HOU Xue-qin1*,ZHANG Han-ting1*. Effects of Osthole on Learning and Memory and the Estrogen Pathway in Ovariectomized Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 7-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||