ACTA NEUROPHARMACOLOGICA ›› 2020, Vol. 10 ›› Issue (4): 58-64.DOI: 10.3969/j.issn.2095-1396.2020.04.010
HAI Ji-tao,LUO Huan-min
Online:
2020-08-26
Published:
2020-08-26
Contact:
罗焕敏,男,博士,教授,博士生导师;研究方向:神经药理学;E-mail:tlhm@jnu.edu.cn
About author:
海吉涛,男,硕士研究生;研究方向:神经药理学;E-mail:2458520104@qq.com
CLC Number:
HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease[J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2020.04.010
[1] Alzheimer's Association. 2015 Alzheimer's disease facts and figures[R]. Alzhmer's & Dementia, 2015, 11(3): 332-384. [2] Rebecca Nisbet, Juan Carlos Polanco, Lars Matthias Ittner, et al. Tau aggregation and its interplay with amyloid-β[J]. Acta Neuropathol, 2015, 129(2): 207-220. [3] Terry R D, Masliah E, Salmon D P, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment[J]. Annals of Neurology, 1991, 30(4): 572-580. [4] Li Chuan-yu, Zhao Rui, Gao Kai, et al. Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease[J]. Current Alzheimer Research, 2011, 8(1): 67-80. [5] Zsuzsanna Nagy. The last neuronal division: a unifying hypothesis for the pathogenesis of Alzheimer's disease[J]. J Cellular and Molecular Medicine, 2005, 9(3): 531-541. [6] Kenneth Beagley, Wilhelmina M Huston, Philip Hansbro, et al. Chlamydial infection of immune cells: altered function and implications for disease[J]. Critical Reviews in Immunology, 2009, 29(4): 275-305. [7] Charles W Stratton, Subramaniam Sriram. Association of Chlamydia pneumoniae with central nervous system disease[J]. Microbes and Infection, 2003, 5(13): 1249-1253. [8] Katerina Wolf, Elizabeth Fischer, Ted Hackstadt. Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells[J]. Infection and Immunity, 2000, 68(4): 2379-2385. [9] Brian J Balin, Herve C Gérard, E James Arking, et al. Identification and localization of Chlamydia pneumoniae in the Alzheimer's brain[J]. Medical Microbiology and Immunology, 1998, 187(1): 23-42. [10] Herve C Gérard, Ute Dreses-Werringloer, Kristin S Wildt, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer's brain[J]. FEMS immunology and medical microbiology, 2006, 48(3): 355-366. [11] Christine J Hammond, Loretta R Hallock, Raymond J Howanski, et al. Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain[J]. BMC Neuroscience, 2010, 11(1): 121. [12] Itzhaki R F, Wozniak M A, Appelt D M, et al. Infiltration of the brain by pathogens causes Alzheimer's disease[J]. Neurobiology of Aging, 2004, 25(5): 619-627. [13] Judith Miklossy. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer's disease[J]. Frontiers in Aging Neuroscience, 2015, 7: 46. [14] Garth Nicolson. Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases[J]. Laboratory Medicine, 2008, 39(5): 291-299. [15] Ingar Olsen, Sim Singhrao. Can oral infection be a risk factor for Alzheimer's disease?[J]. J Oral Microbiology, 2015, 7(1): 29143. [16] Judith Miklossy, Sandor Kasas, Robert C Janzer, et al. Further ultrastructural evidence that spirochaetes may play a role in the aetiology of Alzheimer's disease[J]. Neuroreport, 1994, 5(10): 1201-1204. [17] Judith Miklossy. Bacterial amyloid and DNA are important constituents of senile plaques: further evidence of the spirochetal and biofilm nature of senile plaques[J]. J Alzheimer's Disease: JAD, 2016, 53(4): 1459-1473. [18] Judith Miklossy, Kamel Khalili, Lise Gern, et al. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease[J]. Journal of Alzheimer's disease: JAD, 2004, 6(6): 639-649. [19] Miklossy J, Kis A, Radenovic A, et al. Beta-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes[J]. Neurobiology of Aging, 2006, 27(2): 228-236. [20] Riviere G R, Riviere K H, Smith K S. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease[J]. Oral Microbiology and Immunology, 2002, 17(2): 113-118. [21] Judith Miklossy. Alzheimer's disease - a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria[J]. Journal of Neuroinflammation, 2011, 8(1): 90. [22] BarryJ Marshall, J Robin Warren. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration[J]. Lancet (London, England), 1984, 1(8390): 1311-1315. [23] Dulciene M M Queiroz, Andreia M C Rocha, Jean E Crabtree. Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation[J]. Gut Microbes, 2013, 4(6): 494-504. [24] Claire Roubaud Baudron, Christine Varon, Francis Mégraud, et al. Alzheimer's disease and Helicobacter pylori infection:a possible link?][J]. Geriatrie et Psychologie Neuropsychiatrie du Vieillissement, 2016, 14(1): 86-94. [25] May A Beydoun, Hind A Beydoun, Martine Elbejjani, et al. Helicobacter pylori seropositivity and its association with incident all-cause and Alzheimer's disease dementia in large national surveys[J]. Alzheimer's & Dementia : J Alzheimer's Association, 2018, 14(9): 1148-1158. [26] Jannis Kountouras, Marina Boziki, Emmanuel Gavalas E, et al. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer's disease[J]. J Neurology, 2009, 256(5): 758-767. [27] Chang Yang-pei, Chiu Guei-Fen, Kuo Fu-Chen, et al. Eradication of helicobacter pylori is associated with the progression of dementia: A population-based study[J]. Gastroenterology Research and Practice, 2013, (16): 175729. [28] Seiji Shiota, Kazunari Murakami, Aoi Yoshiiwa, et al. The relationship between Helicobacter pylori infection and Alzheimer's disease in Japan[J]. J Neurology, 2011, 258(8): 1460-1463. [29] Guo Yong-hua, Ky-Anh Nguyen, Jan Potempa. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins[J]. Periodontology, 2000, 2010, 54(1): 15-44. [30] Sim Singhrao, Alice Harding, Sophie Poole, et al. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer's disease[J]. Mediators of Inflammation, 2015, (4): 137357. [31] Stephen S Dominy, Casey Lynch, Florian Ermini, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors[J]. Science Advances, 2019, 5(1): eaau3333. [32] Vladimir Ilievski, Paulina K Zuchowska, Stefan J Green, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice[J]. PloS One, 2018, 13(10): e0204941. [33] Ding Ye, Ren Jing-yi, Yu Hong-qiang, et al. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice[J]. Immunity & Ageing : I & A, 2018, 15(1): 6. [34] Nie Ran, Wu Zhou, Ni Jun-jun, et al. Porphyromonas gingivalis infection induces amyloid-β accumulation in monocytes/macrophages[J]. J Alzheimer's Disease: JAD, 2019, 72(2): 479-494. [35] Diana Pisa, Ruth Alonso, Alberto Rábano, et al. Different brain regions are infected with fungi in Alzheimer's disease[J]. Scientific Reports, 2015, 5: 15015. [36] Ruth Alonso, Diana Pisa, Alberto Rábano, et al. Alzheimer's disease and disseminated mycoses[J]. European J Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 2014, 33(7): 1125-1132. [37] Ruth Alonso, Diana Pisa, Anabel Marina, et al. Fungal infection in patients with Alzheimer's disease[J]. J Alzheimer's Disease: JAD, 2014, 41(1): 301-311. [38] Ruth Alonso, Diana Pisa, Ana M Fernández-Fernández, et al. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer's disease[J]. Frontiers in Aging Neuroscience, 2018, 10: 159. [39] Diana Pisa, Ruth Alonso, Alberto Rábano A, et al. Fungal Enolase, β-Tubulin, and chitin are detected in brain tissue from Alzheimer's disease patients[J]. Frontiers in Microbiology, 2016, 7(179): 1772. [40] Ann-Marie Lobo, Alex Agelidis, Deepak Shukla. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation[J]. The Ocular Surface, 2019, 17(1): 40-49. [41] Steven A Harris, Elizabeth Harris. Herpes simplex virus type 1 and other pathogens are key causative factors in sporadic Alzheimer's disease[J]. J Alzheimer's Disease: JAD, 2015, 48(2): 319-353. [42] Federico Licastro, IIaria Carbone, Elena Raschi, et al. The 21st century epidemic: infections as inductors of neuro-degeneration associated with Alzheimer's Disease[J]. Immunity & Ageing: I & A, 2014, 11(1): 22. [43] 孙奕, 周辰, 潘晓东, 等. 1型单纯疱疹病毒抗体与阿尔茨海默病的关联研究[J]. 徐州医科大学学报, 2017, 37(6): 372-376. [44] Ruth F Itzhaki, Richard Lathe, Brian J Balin, et al. Microbes and Alzheimer's disease[J]. J Alzheimer's Disease: JAD, 2016, 51(4): 979-984. [45] Ruth F Itzhaki. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer's disease[J]. Frontiers in Aging Neuroscience, 2018, 10: 324. [46] Hugo Lovheim, Jonathan Gilthorpe, Rolf Adolfsson, et al. Reactivated herpes simplex infection increases the risk of Alzheimer's disease[J]. Alzheimer's & Dementia: J Alzheimer's Association, 2015, 11(6): 593-599. [47] Nell S Lurain, Barbara Hanson, Jeffrey Martinson, et al. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease[J]. The J Infectious Diseases, 2013, 208(4): 564-572. [48] Stefania Varani, Maria Paola Landini. Cytomegalovirus-induced immunopathology and its clinical consequences[J]. Herpesviridae, 2011, 2(1): 6. [49] Ilaria Carbone, Tiziana Lazzarotto, Manuela Ianni, et al. Herpes virus in Alzheimer's disease: relation to progression of the disease[J]. Neurobiology of Aging, 2014, 35(1): 122-129. [50] Lisa Barnes, Ana W Capuano, Alison E Aiello, et al. Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals[J]. The J Infectious Diseases, 2015, 211(2): 230-237. |
[1] | XIE bin, HUANG Zhi-yuan, LIN Duo-duo, YANG Fu-long, XIE Yi-bin. Effect of Acupuncture Combined with Medicine on Depressive Symptoms of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 5-8. |
[2] | SUN Li-cong, ZHANG Dan-shen. Research Progress on Potential Treatment of Alzheimer’s Disease with Alkaloids [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 33-37. |
[3] | WANG Si-yi, LI Xian-xiang, LIU Yi-zhou, DU Shuang, GE Chao, LIU Si-si. Current Situation and Prospect of Alzeimer’s Disease Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 38-42. |
[4] | ZHAO Yu-wei, ZHEN Yan-jie, DAI Yue-ying, SHEN Li-xia. Study on the Neuroprotective Mechanism of Quercetin in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 55-64. |
[5] | ZHANG Hao-ting, SONG Gui-qin, CUI Ruo-tong, HAO Min, WANG Wen-dong. Mining Target Genes of Alzheimer’s Disease Associated with Biological Clock by Bioinformatics Analysis [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 1-7. |
[6] | YANG Xu-hua, DU Shuang, SHEN Li-xia, HAO Jun-rong. Research Progress in Drug Treatment of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 47-53. |
[7] | LIN Si-mei, ZHOU Hong, YANG Bao-xue. The Relationship between Hyperuricemia and Chronic Kidney Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 55-64. |
[8] | ZHEN Yan-jie, GUO Tong-lin, ZHAO Yu-wei, SHEN Li-xia. Study Progress on Phytoestrogen-Mediated Mitochondrial Pathway’s Neuroprotective Effects in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 40-46. |
[9] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[10] | HUANG Zhi-li. [J]. Acta Neuropharmacologica, 2018, 8(5): 97-98. |
[11] | LIU Cai-hong,WU Xian,TANG Su-su,HONG Hao*. Involvement of TGR5 in Aβ-Induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 11-12. |
[12] | WU Xian, LV Yang-ge, TANG Su-Su, HONG Hao. Involvement of TGR5 in Aβ-induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 53-54. |
[13] | DU Yun-guang,CAO Xin-xin,WANG Xiao-ru,WANG Shu-hua. Protective Effect of Vitexin on Cerebral Ischemia-Reperfusion Injury in Rats [J]. Acta Neuropharmacologica, 2017, 7(1): 10-23. |
[14] | WANG Ming-lei,WANG Wen-ge,ZHANG Jun-hong. Effects of Different Challenging Time on Airway Inflammation and Airway Remodeling of an Asthmatic Mouse Model [J]. Acta Neuropharmacologica, 2017, 7(1): 29-37. |
[15] | DU Guan-tao,ZHANG Chun-teng,HONG Hao. Progress on Research of 5-Lipoxygenase in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2016, 6(5): 39-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||