Acta Neuropharmacologica ›› 2016, Vol. 6 ›› Issue (1): 49-57.DOI: 10.3969/j.issn.2095-1396.2016.01.007
Previous Articles Next Articles
LI Li,ZHANG Hai-lin
Online:
2016-02-26
Published:
2016-05-10
Contact:
张海林,男,教授,博士生导师;研究方向:神经药理学;Tel:+86-0311-86266565,E-mail:zhanghl@hebmu.edu.cn
About author:
李黎,女,博士研究生;研究方向:神经药理学;Tel:+86-031186266565,E-mail:emily5657@126.com
Supported by:
国家自然科学基金资助项目(No.0300610102)
CLC Number:
LI Li,ZHANG Hai-lin. The Multi-target Mechanism of CCL2/CCR2 Involved in Neuropathic Pain[J]. Acta Neuropharmacologica, 2016, 6(1): 49-57.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2016.01.007
[1] Ana Clara Cristovao, Dong-Hee Choi, Graca Baltazar, et al. The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death[J]. Antioxid Redox Signal, 2009, 11(9): 2105-2118.[2] Johanna Mäkelä, Timofey V Tselykh, Jyrki P Kukkonen, et al. Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons[J]. Neuropharmacology, 2016, 102: 266-275.[3] Nirit Lev, Yael Barhum, Neri S Pilosof, et al. DJ-1 protects against dopamine toxicity: implications for Parkinson's disease and aging[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(3): 215-225.[4] Alvin P Joselin, Sarah J Hewitt, Steve M Callagham, et al. ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons[J]. Hum Mol Genet, 2012, 21(22): 4888-4903.[5] Kazuki Hattori, Isao Naguro, Christopher Runchel, et al. The roles of ASK family proteins in stress responses and diseases[J]. Cell Commun Signal, 2009, 7: 9.[6] Jens Waak, Stephanie Weber, Karin Gorner, et al. Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1[J]. J Biol Chem, 2009, 284(21): 14245-57.[7] Xiao Tao, Liang Tong. Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease[J]. J Biol Chem, 2003, 278(33): 31372-31379.[8] Olga Corti, Suzanne Lesage, Alexis Brice. What genetics tells us about the causes and mechanisms of Parkinson's disease[J]. Physiol Rev, 2011, 91(4): 1161-1218.[9] Hiromasa Ooe, Chinatsu Maita, Hiroshi Maita, et al. Specific cleavage of DJ-1 under an oxidative condition[J]. Neurosci Lett, 2006, 406(3): 165-168.[10] Chen Jue, Li Lian, Chin Lih-shen. Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage[J]. Hum Mol Genet, 2010, 19(12): 2395-2408.[11] N Kotaria, U Hinz, S Zechel, et al. Localization of DJ-1 protein in the murine brain[J]. Cell Tissue Res, 2005, 322(3): 503-507.[12] Junn Eunsung, Won Hee Jang, Zhao-xin, et al. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection[J]. J Neurosci Res, 2009, 87(1): 123-129.[13] V Bonifati, P Rizzu, F Squitieri, et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism[J]. Neurol Sci, 2003, 24(3): 159-160.[14] Vincenzo Bonifati, Patrizia Rizzu, Marijke J Van Baren, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism[J]. Science, 2003, 299(5604): 256-259.[15] Joungil Choi, M Cameron Sullards, James A Olzmann, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases[J]. J Biol Chem, 2006, 281(16): 10816-10824.[16] Dong Hwan Ho, Sanghak Yi, Hyemyung Seo, et al. Increased DJ-1 in urine exosome of Korean males with Parkinson's disease[J]. Biomed Res Int, 2014, 2014:704678.[17] Kang Wen-yan, Yang Qiong, Jiang Xu-feng, et al. Salivary DJ-1 could be an indicator of Parkinson's disease progression[J]. Front Aging Neurosci, 2014, 6: 102.[18] Masaaki Waragai, Masaaki Nakai, Jianshe Wei, et al. Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson's disease[J]. Neurosci Lett, 2007, 425(1): 18-22.[19] Yoshiro Saito. Oxidized DJ-1 as a possible biomarker of Parkinson's disease[J]. J Clin Biochem Nutr, 2014, 54(3): 138-144.[20] W Davis Parker, Janice K Parks, Russell H Swerdlow. Complex I deficiency in Parkinson's disease frontal cortex[J]. Brain Res, 2008, 1189: 215-218.[21] C W Olanow. The pathogenesis of cell death in Parkinson's disease--2007[J]. Mov Disord, 2007, 22(Suppl 17): S335-S342.[22] P Jenner. Oxidative stress in Parkinson's disease and other neurodegenerative disorders[J]. Pathol Biol (Paris), 1996, 44(1): 57-64.[23] Philipp J Kahle, Jens Waak, Thomas Gasser. DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders[J]. Free Radic Biol Med, 2009, 47(10): 1354-1361.[24] Hiroyoshi Ariga, Kazuko Takahashi, Izumi Kato, et al. Neuroprotective function of DJ-1 in Parkinson's disease[J]. Oxid Med Cell Longev, 2013, 2013: 683920.[25] Rosa M Canet-Aviles, Mark A Wilson, David W Miller, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization[J]. Proc Natl Acad Sci USA, 2004, 101(24):9103-9108.[26] Eunsung Junn, Hiroyuki Taniguchi, Byeong Seon Jeong, et al. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death[J]. Proc Natl Acad Sci USA, 2005, 102(27): 9691-9696.[27] Liu Fang, Jamie L Nguyen, John D Hulleman, et al. Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson's disease[J]. J Neurochem, 2008, 105(6): 2435-53.[28] Zhou Wen-bo, Curt R Freed. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity[J]. J Biol Chem, 2005, 280(52): 43150-43158.[29] Derek A Drechsel, Manisha Patel. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system[J]. J Biol Chem, 2010, 285(36): 27850-27858.[30] Pamela Lopert, Manisha Patel. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption[J]. Redox Biology, 2014, 2:667-672.[31] Casey M Clements, Richard S McNally, Brian J Conti, et al. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2[J]. Proc Natl Acad Sci USA, 2006, 103(41):15091-15096.[32] Melba C Jaramillo, Donna D Zhang. The emerging role of the Nrf2-Keap1 signaling pathway in cancer[J]. Genes Dev, 2013, 27(20): 2179-2191.[33] Li Gan, Delinda A Johnson, Jeffrey A Johnson. Keap1-Nrf2 activation in the presence and absence of DJ-1[J]. Eur J Neurosci, 2010, 31(6): 967-977.[34] Tatsuki Yasuda, Yusuke Kaji, Tomohiro, et al. DJ-1 cooperates with PYCR1 in cell protection against oxidative stress[J]. Biochem Biophys Res Commun, 2013, 436(2):289-294.[35] David Seo, Goldschmidt-Clemont P. The paraoxonase gene family and atherosclerosis[J]. Free Radic Biol Med, 2005, 38(2):153-163.[36] Lucio G Costa, Rian de Laat, Khoi Dao, et al. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection[J]. Neurotoxicology, 2014, 43: 3-9.[37] Jagan Mohan Jasna, Kannadasan Anandbabu, Subramaniam Rajesh Bharathi, et al. Paraoxonase enzyme protects retinal pigment epithelium from chlorpyrifos insult[J]. PLoS One, 2014, 9(6):e101380.[38] Mohammad Parsanejad, Noam Bourquard, Dianbo Qu, et al. DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress[J]. PLoS One, 2014, 9(9): e106601.[39] Rob M Ewing, Peter Chu, Fred Elisma, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry[J]. Mol Syst Biol, 2007, 3(1):89.[40] M D P Willcox, M Parsanejad, D W S Harty, et al. Regulation of the VHL/HIF-1 pathway by DJ-1[J]. J Neurosci, 2014, 34(23): 8043-8050.[41] Xiong Ran, Wang Zhi-quan, Zhao Zong-bo, et al. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration[J]. Neurobiol Aging, 2014, 35(3): 705-714. |
[1] | WANG Si-yi, LI Xian-xiang, LIU Yi-zhou, DU Shuang, GE Chao, LIU Si-si. Current Situation and Prospect of Alzeimer’s Disease Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 38-42. |
[2] | XIONG Meng-yao, JIA Ying-li, YANG Bao-xue. Relationship between Prostaglandin Receptor EP4 and Renal Diseases [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 54-64. |
[3] | JIAO Miao-miao, WANG Xu, ZHOU Na, ZHANG Meng, LIU Jin-na, TAN Zhan-wang, HUANG Dong-yang. Comparison of Analgesic Effects of Corydalis Yanhusuo,Radix Lindera,Jin Ling-zi powder and Xiao Huo-luo Dan on Rats with Neuropathic Pain#br# [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 1-. |
[4] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[5] | WU Xian,HONG Hao. Bile Acids and Their Receptors are Associated with Central Nervous System Diseases [J]. Acta Neuropharmacologica, 2019, 9(1): 23-30. |
[6] | ZHANG Dan-shen,SU Xiao-mei. Role of N-Methyl-D-Aspartate Receptor in Memory Network [J]. Acta Neuropharmacologica, 2019, 9(1): 44-62. |
[7] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[8] | ZHU Chao,DU Ning-ning,ZHOU Yan-meng,WANG Hao,HOU Xue-qin,ZHANG Fang-fang,TAN Rui,GAO. Increased Blood Pressure Variability Impairs Memory in Rats [J]. Acta Neuropharmacologica, 2018, 8(5): 79-80. |
[9] | HU Wei-wei, CHEN Zhong. Dissection of the Role of Cell Type Specific Histamine Receptors in Central Nervous System Disorders [J]. Acta Neuropharmacologica, 2018, 8(5): 88-89. |
[10] | ZHANG Fang-fang1,ZHOU Yan-memg1,WANG Hao1,GAO Shan1,WANG Lei1,TAN Rui1,DU Xian1,ZHAO Xiao-min1,ZHANG Han-ting1,2 *. PDE4 Inhibitor Ameliorates Neuropathic Pain by Upregulating Spinal Connexin 43 Expression [J]. Acta Neuropharmacologica, 2018, 8(4): 8-9. |
[11] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms [J]. Acta Neuropharmacologica, 2018, 8(4): 23-25. |
[12] | WANG Xiao-na, ZHANG Xin-yu, SUN Yan-yun, JIN Xin-chun. D1 Receptor-Mediated Endogenous tPA Upregulation Contributes to Acute Blood Brain Barrier Damage [J]. Acta Neuropharmacologica, 2018, 8(4): 58-59. |
[13] | SUN Yi,TAN Bo,SU Rui-bin. Biased Ligand——Novel Paradigm for Opioid Analgesics [J]. Acta Neuropharmacologica, 2018, 8(2): 1-7. |
[14] | WANG Yun,ZHEN Xue-chu. An Update on Allosteric Modulator of Sigma-1 Receptors: Potential Applications [J]. Acta Neuropharmacologica, 2018, 8(1): 35-44. |
[15] | ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen. Research Progress of the Role and Underlying Mechanism of Dynorphin/κ Opioid Receptor in the Development of Depression [J]. Acta Neuropharmacologica, 2018, 8(1): 54-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||