[1] Juan I Barrasa, Nieves Olmo, M Antonia Lizarbe, et al. Bile acids in the colon, from healthy to cytotoxic molecules [J]. Toxicology in vitro: an international journal published in association with BIBRA, 2013, 27(2):964-977.
[2] Javier del Pino, Paula Moyano, Maria Jose Anadon, et al. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration [J]. Toxicology, 2015, 336:1-9.
[3] David W Russell. The enzymes, regulation, and genetics of bile acid synthesis [J]. Annual Review of Biochemistry, 2003, 72(0):137-174.
[4] Schalm S W, LaRusso N F, Alan Hofmann, et al. Diurnal serum levels of primary conjugated bile acids. Assessment by specific radioimmunoassays for conjugates of cholic and chenodeoxycholic acid [J]. Gut, 1978, 19(11):1006-1014.
[5] Charles Thomas, Johan Auwerx, Kristina Schoonjans. Bile acids and the membrane bile acid receptor TGR5-connecting nutrition and metabolism [J]. Thyroid: Official J American Thyroid Association, 2008, 18(2):167-174.
[6] Mok H Y, Klaus Von Bergmann, Grundy S M. Regulation of pool size of bile acids in man [J]. Gastroenterology, 1977, 73(4 Pt 1):684-690.
[7] Bart Staels, Yehuda Handelsman, Vivian Fonseca. Bile acid sequestrants for lipid and glucose control [J]. Current Diabetes Reports, 2010, 10(1):70-77.
[8] Kazuyuki Yamagata, Hiroaki Daitoku, Yoko Shimamoto, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1 [J]. J Biological Chemistry, 2004, 279 (22):23158-65.
[9] Bo Angelin, Einarsson K, Hellstrom K, et al. Bile acid kinetics in relation to endogenous tryglyceride metabolism in various types of hyperlipoproteinemia [J]. J Lipid Research, 1978, 19(8):1004-1016.
[10] Guo Chuan-sheng, Xie Shu-jun, Chi Zhe-xu, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome [J]. Immunity, 2016, 45 (4):944.
[11] Verena Keitel, Ralf Kubitz, Dieter Haussinger. Endocrine and paracrine role of bile acids [J]. World J Gastroenterology, 2008, 14(37):5620-5629.
[12] David P Moore, Shigeaki Kato, Xie Wen, et al. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor [J]. Pharmacological Reviews, 2006, 58 (4):742-759.
[13] Yuji Kawamata, Fujii Ryo, Masaki Hosoya, et al. A G protein-coupled receptor responsive to bile acids [J]. J Biological Chemistry, 2003, 278(11):9435-9440.
[14] Matthew McMillin, Gabriel Frampton, Matthew Quinn, et al. Bile acid signaling is involved in the neurological decline in a murine model of acute liver failure [J]. The American J Pathology, 2016, 186(2):312-23.
[15] Verena Keitel, Dieter Haussinger. Perspective: TGR5 (Gpbar-1) in liver physiology and disease [J]. Clinics and Research in Hepatology and Gastroenterology, 2012, 36 (5):412-419.
[16] Verena Keitel, Boris Gorg, Hans Bidmon, et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain [J]. Glia, 2010, 58(15):1794-805.
[17] Natalia Yanguas-Casas, M Asuncion de la Barreda-Manso, Manuel Nieto-Sampedro, et al. TUDCA: an agonist of the bile acid receptor GPBAR1/TGR5 With Anti-inflammatory effects in microglial cells [J]. J Cellular Physiology, 2017, 232(8):2231-2245.
[18] Eva Hambruch, Shinobu Miyazaki-Anzai, Ulrike Hahn, et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice [J]. The J Pharmacology and Experimental Therapeutics, 2012, 343(3):556-567.
[19] Sunder Mudaliar, Robert R Henry, Arun J Sanyal, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease [J]. Gastroenterology, 2013, 145(3):574-82 e1.
[20] Daniel Flesch, Matthias Gabler, Andreas Lill, et al. Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties [J]. Bioorganic & Medicinal Chemistry, 2015, 23(13):3490-8.
[21] Adwoa Akwabi-Ameyaw, Jonathan Y Bass, Richard D Caldwell, et al. Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064 [J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18(15):4339-43.
[22] Brenton Flatt, Richard Martin, Wang Tie-lin, et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR) [J]. J Medicinal Chemistry, 2009, 52(4):904-907.
[23] Michael Trauner, Aliya Gulamhusein, Bilal Hameed, et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis [J]. Hepatology, 2019, 70(3): 788-801.
[24] Thijs W H Pols. TGR5 in inflammation and cardiovascular disease [J]. Biochemical Society Transactions, 2014, 42(2):244-249.
[25] Jung –Ah Cho, Tae-Joo Kim, Hye-Jung Moon, et al. Cardiolipin activates antigen-presenting cells via TLR2-PI3K-PKN1-AKT/p38-NF-kB signaling to prime antigen-specific naive T cells in mice [J]. European J Immunology, 2018, 48(5):777-90.
[26] Pols T W H, Noriega L G, Nomura M, et al. The bile acid membrane receptor TGR5: a valuable metabolic target [J]. Digestive Diseases, 2011, 29(1):37-44.
[27] Kim Mertens, Andries Kalsbeek, Maarten Rene Soeters, et al. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system [J]. Frontiers in Neuroscience, 2017, 11: 617.
[28] Hayley D Ackerman, Glenn S Gerhard. Bile acids in neurodegenerative disorders [J]. Front Aging Neurosci, 2016, 22, 8:263
[29] Jeffrey Cummings, Garam Lee, Travis Mortsdorf, et al. Alzheimer's disease drug development pipeline: 2017 [J]. Alzheimer's & Dementia, 2017, 3(3):367-84.
[30] Kwangsik Nho, Alexandra Kueider-Paisley, Siamak MahmoudianDehkordi, et al. Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers [J]. Alzheimer's & Dementia : J Alzheimer's Association, 2019, 15(2):232-44.
[31] Siamak MahmoudianDehkordi, Matthias Arnold, Kwangsik Nho, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome [J]. Alzheimer's & Dementia : J Alzheimer's Association, 2019, 15(1):76-92.
[32] Susana Sola, Joana Dias Amaral, Pedro Borralho, et al. Functional modulation of nuclear steroid receptors by tauroursodeoxycholic acid reduces amyloid beta-peptide-induced apoptosis [J]. Molecular Endocrinology, 2006, 20(10):2292-2303.
[33] Adrian C Lo, Zsuzsanna Callaerts-Vegh, Ana F Nunes, et al. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice [J]. Neurobiology of Disease, 2013, 50: 21-29.
[34] Rita M Ramalho, Ana F Nunes, Raquel B Dias, et al. Tauroursodeoxycholic acid suppresses amyloid beta-induced synaptic toxicity in vitro and in APP/PS1 mice [J]. Neurobiology of Aging, 2013, 34(2):551-61.
[35] Wu X, Lv Y G, Du Y F, et al. Inhibitory effect of INT-777 on lipopolysaccharide-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2018, 88:360-74.
[36] Wu Xian, Lv Yang-ge, Du Yi-feng, et al. Neuroprotective effects of INT-777 against Abeta1-42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice [J]. Brain, Behavior, and Immunity, 2018, 73(09): 533-545.
[37] Mohsen Ghanbari, Sirwan Darweesh, Hans de Looper, et al. Genetic variants in microRNAs and their binding sites are associated with the risk of Parkinson disease [J]. Human Mutation, 2016, 37(3):292-300.
[38] Stewart F Graham, Nolwen L Rey, Zafer Ugur, et al. Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson's disease [J]. Metabolites, 2018, 8(4):71.
[39] Chun Hong-sung, Walter C Low. Ursodeoxycholic acid suppresses mitochondria-dependent programmed cell death induced by sodium nitroprusside in SH-SY5Y cells[J]. Toxicology, 2012, 292(2-3):105-112.
[40] Luo Yu, Hoffer Alan, Hoffer Barry, et al. Mitochondria: A therapeutic target for Parkinson's disease? [J]. International J Molecular Sciences, 2015, 16(9):20704-30.
[41] Castro-Caldas M, Carvalho A N, Rodrigues E, et al. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson's disease [J]. Molecular Neurobiology, 2012, 46(2):475-486.
[42] Heather J Mortiboys, Jan Aasly, Oliver Bandmann. Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson's disease [J]. Brain : J Neurology, 2013, 136 (Pt 10):3038-3050.
[43] Oliver Maier, Julia Bohm, Michael Dahm, et al. Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration [J]. Neurochemistry International, 2013, 62(8):1029-1038.
[44] Charlotee Veyrat-Durebex, Philippe Corcia, Audrey Dangoumau, et al. Advances in cellular models to explore the pathophysiology of amyotrophic lateral sclerosis [J]. Molecular Neurobiology, 2014, 49(2):966-983.
[45] Ana Rita Vaz, Carolina Cunha, Catia Gomes, et al. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration [J]. Molecular Neurobiology, 2015, 51(3):864-877.
[46] Gareth Parry, Cecilia Rodrigues, Marcia M Aranha, et al. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with amyotrophic lateral sclerosis [J]. Clinical Neuropharmacology, 2010, 33(1):17-21.
[47] Min Ju-Hong, Hong Yoon-Ho, Sung Jung-Joon, et al. Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: a randomized cross-over trial [J]. J Korean Medical Science, 2012, 27(2):200-206.
[48] Elia A E, Lalli S, Monsurro M R, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis [J]. European J Neurology, 2016, 23(1):45-52.
[49] Christopher A Ross, Elizabeth H Aylward, Edward J Wild, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics [J]. Nature Reviews Neurology, 2014, 10(4):204-216.
[50] Cecilia Rodrigues, Stieers C L, Christopher Dirk Keene, et al. Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition [J]. J Neurochemistry, 2000, 75(6):2368-2379.
[51] Keene CD, Rodrigues CM, Eich T, et al. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington's disease [J]. Experimental neurology, 2001, 171(2):351-60.
[52] C Dirk Keene, Cecilia M P Rodrigues, Tacjana Eich, et al. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16):10671-10676.
[53] Cecilia Rodrigues, Stephen Spellman, Susana Sola, et al. Neuroprotection by a bile acid in an acute stroke model in the rat [J]. J Cerebral Blood Flow and Metabolism : Official J International Society of Cerebral Blood Flow and Metabolism, 2002, 22(4):463-471.
[54] Natalia Yanguas-Casas, M Asuncion de la Barreda-Manso, Manuel Nieto-Sampedro, et al. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation [J]. J Neuroinflammation, 2014, 11(1):50.
[55] Cecilia M P Rodrigues, Susana Sola, Nan Zhen-hong, et al. Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10):6087-6092.
[56] Roger F Butterworth. Hepatic encephalopathy: a central neuroinflammatory disorder? [J]. Hepatology, 2011, 53(4):1372-1376.
[57] Matthew McMillin, Gabriel Frampton, Richard Tobin, et al. TGR5 signaling reduces neuroinflammation during hepatic encephalopathy [J]. J Neurochemistry, 2015, 135(3):565-576. |