[1] 许琳, 张均田. 突触长时程增强形成机制的研究进展[J]. 生理科学进展, 2001, 32(4): 298-301.
[2] 吕宝璋, 卢建, 安明榜. 受体学[M]. 安徽: 安徽科学技术出版社, 2000: 91-102.
[3] Watkins J C. The synthesis of some acidic amino acids possessing neuropharmacological activity[J]. J Med Pham Chem, 1962, 91(5): 1187-1199.
[4] Hiroyasu Furukawa, Satinder K Singh, Romina Mancusso, et al. Subunit arrangements and function in NMDA receptors[J]. Nature, 2005, 438(7065): 185-192.
[5] Thomas J Ha, Andrea B Kohn, Yelena V Bobkova, et al. Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea relevance to memory mechanisms[J]. Biol Bull, 2006, 210(3): 255-270.
[6] Philipp Albrecht, Jan Lewerenz, Sonja Dittmer, et al. Mechanisms of oxidative glutamate to toxicity: the glitamate/cystine antiporter system xc-as a neuroprotective drug target[J]. CNS Neurol Disord Drug Targets, 2010, 9(3): 373-382.
[7] Lechner H A, Squire L R, Byrne J H. 100 years of consolidation--remembering Müller and Pilzecker[J]. Learn Mem, 1999, 6(2): 77-87.
[8] Ding Juan, Zhou Hui-hui, Ma Quan-rui, et al. Expression of NR1 and apoptosis levels in the hippocampal cells of mice treated with MK-801[J]. Mol Med Rep, 2017, 16(6): 8359-8364.
[9] 徐淑君, 沈海清, 陈中, 等. 大鼠海马NMDA受体NR1亚单位蛋白的基础表达量与学习记忆相关[J]. 浙江大学学报: 医学版, 2003, 32(6): 465-469.
[10] Eiji Shimizu, Tang Ya-ping, Claire Rampon, et al. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation[J]. Science, 2000, 290(5494): 1170-1174.
[11] 王文, 许天乐. NMDA受体通道的结构与功能[J]. 生物化学与生物物理进展, 1997, 24(4): 321-326.
[12] 刘辉, 张万琴. PSD-95对NMDA受体信号转导的整合作用[J]. 生理科学进展, 2001, 32(4): 343-346.
[13] Bai Ning, Hideki Hayashi, Tomomi Aida, et al. Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity[J]. Mol Brain, 2013, 6(22): 1-11.
[14] Tomoyuki Takahashi, Dirk Feldmeyer, Norimitsu Suzuki, et al. Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum[J]. J Neurosci, 1996, 16(14): 4376-4382.
[15] Francisco Suarez, Zhao Q, Monaghan D T, et al. Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones[J]. Eur J Neurosci, 2010, 32(3): 359-367.
[16] Sarah E Criscimagna-Hemminger, Reza Shadmehr. Consolidation patterns of human motor memory[J]. J Neurosci, 2008, 28(39): 9610-9618.
[17] Hannah Monyer, Nail Burnashev, David J Laurie, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron, 1994, 12(3): 529-540.
[18] Wang De-heng, Stephanie A Jacobs, Joe Z Tsien. Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline[J]. Expert Opin Ther Targets, 2014, 18(10): 1121-1130.
[19] Masanori Matsuzaki, Naoki Honkura, Graham C R Ellis-Davies, et al. Structural basis of long-term potentiation in single dendritic spines[J]. Nature, 2004, 429(6993): 761-766.
[20] Jean Pierre Charton, Matthias Herkert, Cord-Michael Becker, et al. Cellular and subcellular localization of the 2B-subunit of the NMDA receptor in the adult rat telenecphalon[J]. Brain Res, 1999, 816(2): 609-617.
[21] Florian Müller-Dahlhaus, Ulf Ziemann. Metaplasticity in human cortex[J]. Neuroscientist, 2015, 21(2): 185-202.
[22] 王玉兰, 许铁军, 樊红彬, 等. 生后早期大鼠海马NMDA受体亚单位NR1、NR2A和NR2B的表达变化[J]. 神经解剖学杂志, 2003, 19(4): 413-418.
[23] David M Bannerman, Burkhard Niewoehner, Louisa Lyon, et al. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory[J]. J Neurosci, 2008, 28(14):3623-3630.
[24] Theresa Leslie White, Steven L Youngentob. The effect of NMDA-NR2B receptor subunit over-expression on olfactory memory task performance in the mouse[J]. Brain Res, 2004, 1021(1): 1-7.
[25] Jakob von Engelhardt, Beril Doganci, Vidar Jensen, et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks[J]. Neuron, 2008, 60(5): 846-60.
[26] Stuart Cull-Candy, Daniel Leszkiewicz. Role of distinct NMDA receptor subtypes at central synapses[J]. Sci STKE, 2004, 255: re16.
[27] Jon E Chatterton, Marc Awobuluyi, Louis S Premkumar, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits[J]. Nature, 2002, 415(14): 793-798.
[28] Juan C Piña-Crespo, Maria Talantova, Ileana Micu, et al. Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits[J]. J Neurosci, 2010, 30(34): 11501-11505.
[29] Svenja Pachernegg, Nathalie Strutz-Seebohm, Michael Hollmann. GluN3 subunit-containing NMDA receptors: not just one-trick ponies[J]. Trends Neurosc, 2012, 35(4): 240-249.
[30] John E Kolb, Joseph Trettel, Eric Stephen Levine. BDNF enhancement of postsynaptic NMDA receptors is blocked by ethanol[J]. Synapse, 2005, 55(1): 52-57.
[31] Lee Chia-Hsueh, Lü Wei, Jennifer J Carlisle Michel, et al. NMDA receptor structures reveal subunit arrangement and pore architecture[J]. Nature, 2014, 511(7508):191-197.
[32] Liu Hong-ping, Zhang Yu-hua, Qi De-bo, et al. Downregulation of the spinal NMDA receptor NR2B subunit during electro-acupuncture relief of chronic visceral hyperalgesia[J]. J Physiol Sci, 2017, 67(1): 197-206.
[33] Xu Xing-xing, Luo Jian-hong. Mutations of N-Methyl-D-Aspartate receptor subunits in epilepsy[J]. Neurosci Bull, 2018, 34(3): 549-565.
[34] Gary J lacobucci, Bruce A Maki, Gabriela K Popescu. Effects of external and internal Ca2+ on unitary NMDA receptor properties[J]. Biophys J, 2015, 108(2): 285a.
[35] Kenneth R Tovar, Matthew J McGinley, Gary L Westbrook. Triheteromeric NMDA receptors at hippocampal synapses[J]. J Neurosc, 2013, 33(21):9150-9160.
[36] Hayashi Y, Ishibashi H, Hashimoto K, et al. Glycine potentiates the NMDA response in culture mouse brain neurons[J]. Nature, 1987, 325(6104): 529-531.
[37] Mayer M L, Westbrook G L, Guthrie P B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones[J]. Nature, 1984, 309(5965): 261-263.
[38] Mayer M L, Westbrook G L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones[J]. J Physiol, 1987, 394: 501-527.
[39] 杨雁, 李彩云, 高阳, 等. NMDA受体与癫痫及学习记忆的关系[J]. 中外妇儿健康, 2011, 19(9): 160.
[40] Robert C Malcnka, Roger A Nicoll. Long-term potentiation A decade of progress[J]. Science, 1999, 285(5435): 1870-1874.
[41] Tovar Kenneth R, Westbrook Gary L. Modulating synaptic NMDA receptors[J]. Neuropharmacology, 2017, 112(Pt A): 29-33.
[42] Jin Hwan Lee, Zheng Zachory Wei, Chen Dong-dong, et al. A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of adult mice[J]. Am J Physiol Cell Physiol, 2015, 308(7): C570-577.
[43] Stephen F Traynelis, Lonnie P Wollmuth, Chris J McBain, et al. Glutamate receptor ion channels: structure, regulation, and function[J]. Pharmacol Rev, 2010, 62(3): 405-496.
[44] Mark L Mayer. Emerging models of glutamate receptor ion channel structure and function[J]. Structure, 2011, 19(10):1370-1380.
[45] Jin Rong-sheng, Satinder Kaur Singh, Gu Shen-yan, et al. Crystal structure and association behaviour of the GluR2 amino-terminal domain[J]. EMBO J, 2009, 28(12): 1812-1823.
[46] Erkan Karakas, Noriko Simorowski, Hiro Furukawa. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2 NMDA receptors[J]. Nature, 2011, 475(7355): 249-253.
[47] 王晓东, 胡国渊. NMDA受体-通道MK-801结合位点的生化药理研究. 药理学进展[M]. 北京: 科学出版社, 1999, 242-253.
[48] Dallolio R, Gnadolfi O, Gaggi R. D-Cyeloserine, a positive moduloatr of NMDA receptors inhibits serotonergic function[J]. Behav Phannacol, 2000, 11(7-8): 631-637.
[49] Sew Ferre, Francisco Ciruela, Amina S Woods. Glutamate mGlu5 adenosine 2A dopamine D2 receptor interactions in the striatum: Implications for drug therapy in neuro psychiatric disorders and drug abuse[J]. Cur Med Chem Central Nervous System Agents, 2003, 3:1.
[50] 陈鹏慧, 阮怀珍, 吴席贵. 缺氧及谷氨酸对大鼠下丘脑神经元NMDA通道的影响[J]. 第三军医大学学报, 2001, 23(4): 429-431.
[51] 董晓华, 张丹参, 孟宪勇. Glu/GABA水平相关性对学习记忆的影响[J]. 中国老年学杂志, 2006, 2: 283-285.
[52] 于德山, 陈惟昌. 学习记忆中的关键物质[J]. 生理科学进展, 1990, 21(4): 375-376.
[53] 柯珂, 乔琰, 王俊. NMDA受体概述及其在学习记忆中的作用[J]. 广西科学院学报, 2011, 27(1): 49-54.
[54] 常全忠, 张淑玲. 镁对N-甲基-D-天冬氨酸诱导离体海马神经元凋亡的作用[J]. 新乡医学院学报, 2005, 3: 211-212.
[55] Stefan Bleich, Konstanze Römer, Jens Wiltfang, et al. Glutamate and the glutamate receptor system: a target for drug action[J]. Int J Geriatr Psychiatry, 2003, 18: 33-40.
[56] 林奕斌, 赵同军, 赵金良, 等. 中枢神经系统N-甲基-D-天氡氨酸激活的单通道动力学行为研究[J]. 医用生物力学, 2007, 22(1): 59-63.
[57] Lorenz Müller, Tursonjan Tokay, Katrin Porath, et al. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B[J]. Neurobiol Dis. 2013, 54: 183-193.
[58] 罗冬根, 杨雄里. 锌离子: 一种内源性的神经调质[J]. 生理科学进展, 2001, 32(3): 204-208.
[59] Kaspar Vogt, Jack Mellor, Tong Gang, et al. The actions of synaptically released zinc at hippocampal mossy fiber synapses[J]. Neuron, 2000, 26(1): 187-196.
[60] 刘燕强, 顾景范. 缺锌对大鼠脑组织游离氨基酸和突触膜N-甲基-D-天冬氨酸受体含量的影响[J]. 南开大学学报, 2003, 36(2): 21-26.
[61] 柴晓颖, 吴越, 魏琳子, 等. 多胺在调节学习和记忆能力中的作用[J]. 广东医学, 2018, 39(6): 939-941.
[62] Estebe J P, Cecile Degryse, Gilles Rezzadori, et al. Tolerance and efficacy of a polyamine-deficient diet for the treatment of perioperative pain[J]. Nutrition, 2017, 36: 33-40.
[63] Takahiko Noro, Kazuhiko Namekata, Yuriko Azuchi, et al. Spermidine ameliorates neurodegeneration in a mouse model of normal tension glaucoma[J]. Invest Ophthalmol Vis Sci, 2015, 56(8): 5012-5019.
[64] Anuradha Bhukel, Frank Madeo, Stephan J Sigrist. Spermidine boosts autophagy to protect from synapse aging[J]. Autophagy, 2017, 13(2): 444-445.
[65] Serguei N Skatchkova, Sergei Antonovb, Misty J Eatona. Glia and glial polyamines. Role in brain function in health and disease[J]. Biochem Suppl, 2016, 10(2): 73-98.
[66] Agenor Limon, Firoza Mamdani, Brooke E Hjelm, et al. Target of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission[J]. Neurosci Biobehav Rev, 2016, 66: 80-91.
[67] 黄辉, 阮怀珍. 低压低氧对胎鼠海马神经元NMDA受体影响的实验研究[J]. 中国应用生理学杂志, 2002, 18(4): 321-323.
[68] 张春, 王世真, 王铁, 等. 川芎嗪对拟AD小鼠脑胆碱乙酰基转移酶和NMDA受体的影响[J]. 江苏医药, 2011, 37(4): 390-392.
[69] Cynthia A Massaad, Eric Klann. Reactive oxygen species in the regulation of synaptic plasticity and memory[J]. Antioxid Redox Signal, 2011, 14(10): 2013-2054.
[70] Ariel Kamsler, Menahem Segal. Hydrogen peroxide modulation of synaptic plasticity[J]. J Neurosci, 2003, 23(1): 269-276.
[71] Cai Fei, Wang Fang, Lin Fan-kai, et al. Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway[J]. Free Radic Biol Med, 2008, 45(7): 964-970.
[72] Wang Rui, P Hemachandra Reddy. Role of glutamate and NMDA receptors in Alzheimer's disease[J]. J Alzheimers Dis, 2017, 57(4):1041-1048.
[73] Dominic M Walsh, Dennis J Selkoe. Deciphering the molecular basis of memory failure in Alzheimer’s disease[J]. Neuron, 2004, 44(1): 181-193.
[74] DeKosky S T, Scheff S W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity[J]. Ann Neurol, 1990, 27(5): 457-464.
[75] 冯波, 胡鹏, 王蓉. 突触后致密区与突触可塑性[J]. 首都医科大学学报, 2010, 31(1): 84-87.
[76] Alex Bayés, Louie N van de Lagemaat, Mark O Collins, et al. Characterization of the proteome, disease and evolution of the human postsynaptic density[J]. Nat Neurosci, 2011, 14(1): 19-21.
[77] Holger Husi, Malcolm A Ward, Jyoti S Choudhary, et al. Proteomic analysis of NMDA receptor-adhesion protein signaling complex[J]. Nat Neurosci, 2000, 3(7): 661-669.
[78] Fiorenzo Conti, Richard J Weinberg. Shaping excitation at glutamatergic synapses[J]. Trends Neurosci, 1999, 22(10): 451-458.
[79] Franziska Geifzu, Daniel Partheir, Bianka Goetze, et al. Ocular dominance plasticity after stroke was preserved in PSD-95 knock out mice[J]. PLoS One, 2016, 11(3): e0149771.
[80] Yohan D’Souza, Ahmed Elharram, Raquel Soon-Shiong, et al. Characterization of Aldh2, -/-, mice as an age-related model of cognitive impairment and Alzheimer’s disease[J]. Molecular Brain, 2015, 8(1): 27.
[81] Indra A Lim, Michelle A Merrill, Chen Yu-cui, et al. Disruption of the NMDA receptor-PSD-95 interaction in hippocampal neurons with no obvious physiological short-term effect[J]. Neuropharmacology, 2003, 45(6): 738-754.
[82] Sheng M. The postsynaptic NMDA receptor-PSD-95 signaling complex in excitatory synapses of the brain[J]. J cell Sci, 2001, 114(7): 1251-1252.
[83] Fabrizio Gardoni, Schrama L H, Amer Kamal, et al. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase Ⅱ and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor[J]. J Neurosci, 2001, 21(5): 1501-1509.
[84] El-Husseini A E D, Eric Schnell, Dane M Chetkovich, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science, 2000, 290(5495): 1364-1368.
[85] Flora Y Wong, Reshma Silas, Simon Hew, et al. Cerebral oxygenation is higly sensitive to blood pressure variability in sick preterm infants[J]. PLoS One, 2012, 7(8): e43165.
[86] Bliss T V, Collingridge G L. A synaptic model of memory: long-term potentiation in the hippocampus[J]. Nature, 1993, 361(6407): 31-39.
[87] 张丹参, 薛贵平, 张力, 等. 脑室注射N-甲基-D-门冬氨酸对小鼠学习记忆的影响[J]. 药学学报, 1993, (5): 321-325.
[88] Jennifer K Forsyth, Peter Bachman, Daniel Mathalon, et al. Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain[J]. Proc Natl Acad Sci USA, 2015, 112(50): 15331-15336.
[89] John H Krystal, Walid Abi-Saab, Edward Perry, et al. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects[J]. Psychopharmacology (Berl), 2005, 179(1): 303-309.
[90] Hu Xiao-yu, Yang Jing-hua, Sun Ya-ling, et al. Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors[J]. Food Chem Toxicol, 2018, 113: 1-13.
[91] Anat Biegon, Pamela A Fry, Charles M Paden, et al. Dynamicchanges in N-methyl-D-as-partate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits[J]. Proc Natl Acad Sci USA, 2004, 101(14): 5117-5122.
[92] 周兰兰, 明亮, 马传庚. 老年学习记忆减退机制的研究进展[J]. 中国药理学通报, 2000, 16(6): 621-624.
[93] 苗建亭, 李柱一. β-淀粉样肽对大鼠学习记忆功能及脑胆碱乙酰转移酶和生长抑素表达的影响[J]. 中国神经科学杂志, 2003, 19(1): 23-26.
[94] 洪岸. 老年大鼠学习记忆减退的神经过敏基础[J]. 生理科学进展, 1995, 26(3): 240-243.
[95] Takeshi Kihara, Shun Shimohama. Alzheimer’s disease and acetylcholine receptors[J]. Acta Neurobiol Exp (Wars), 2004, 64(1): 99-105.
[96] Barbara Ferry, James L McGaugh. Involvement of basolateral amygdala alpha 2-adrenoceptors in modulating consolidation of inhibitory avoidance memory[J]. Learn Mem, 2008, 15(4): 238-243.
[97] Benno Roozendaal, Jayme R McReynolds, James L McGaugh. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment[J]. J Neurosci, 2004, 24(6): 1385-1392.
[98] Andrew J Delaney, Petra Lyla Sedlak, Eleonora Autuori, et al. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits[J]. J Neurophysiol, 2013, 109(5): 1391-1402.
[99] Ryan T LaLumiere, Emmanuel Pizano, James L McGaugh. Intra-basolateral amygdala infusions of AP-5 impair or enhance retention of inhibitory avoidance depending on training conditions[J]. Neurobiol Learn Mem, 2004, 81(1): 60-66.
[100] Majid Jafari-Sabet. NMDA receptor antagonists antagonize the facilitatory effects of post-training intra-basolateral amygdala NMDA and physostigmine on passive avoidance learning[J]. Eur J Pharma, 2006, 529(1-3): 122-128.
[101] Efat Nazarinia, Ameneh Rezayof, Maryam Sardari, et al. Contribution of the basolateral amygdala NMDA and muscarinic receptors in rat’s memory retrieval[J]. Neurobiol Learn Mem, 2017, 139: 28-36.
[102] 张均田. 老年性痴呆的发病机理及治疗策略[J]. 药学学报, 2000, 35(8): 535-640.
[103] 宣爱国, 龙大宏, 杨丹迪. BDNF和神经干细胞联用对老年痴呆鼠基底前脑胆碱能神经元和学习记忆力的影响[J]. 神经解剖学杂志, 2005(4): 37-43.
[104] Bernard S, John L. N-methyl-D-aspartate-type receptors mediate striatal 3H-acetylcholine release evoked by excitatory amino acids[J]. Nature, 1982, 297(3): 422-424
[105] Robbert Havekes, Ted Abel, Eddy A Van der Zee. The cholinergic system and neostriatal memory functions[J]. Behav Brain Res, 2011, 221(2): 412-423.
[106] Serena Deiana, Bettina Platt, Gernot Riedel. The cholinergic system and spatial learning[J]. Behav Brain Res, 2011, 221(2): 389-411.
[107] 刘青松, 何湘平, 刘传缋. 乙酰胆碱对培养大鼠皮层神经元兴奋性及抑制性突触电流的相反作用[J]. 生理学报, 1996, 48(4): 313-319.
[108] Juan E Belforte, Veronika Zsiros, Elyse R Sklar, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes[J]. Nature Neuroscience, 2009, 13(1): 76-83.
[109] 黄喜, 陈慧英, 韦廷佳, 等. NMDA受体靶向拮抗剂的研究进展[J]. 生理科学进展, 2018, 49(3): 212-216.
[110] Deborah J Watson, Mariel R Herbert, Mark Stanton. NMDA receptor involvement in spatial delayed alternation in developing rats[J]. Behav Neurosci, 2009, 123(1): 44-53.
[111] Deborah J Watson, Mark E Stanton. Intrahippocampal administration of an NMDA-receptor antagonist impairs spatial discrimination reversal learning in weanling rats[J]. Neurobiol Learn Mem, 2009, 92(1): 89-98.
[112] 刘慧芬, 周文华, 谢小虎. NOS抑制剂和MK-801对吗啡依赖大鼠脊髓和脑干毒蕈碱型受体表达的影响[J]. 中国行为医学科学, 2003, 12(1): 21-23.
[113] Rodrigo A Cunha. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors[J]. Neurochem Int, 2001, 38(2): 107-125.
[114] Ana M Sebastiao, Joaquim A Ribeiro. Adenosine receptors and the central nervous system[J]. Handb Exp Pharmacol, 2009, (193): 471-534.
[115] Bertil B Fredholm, Chen Jiang-fan, Rodrigo A Cunha, et al. Adenosine and brain function[J]. Int Rev Neurobiol, 2005, 63: 191-270.
[116] 沈甫明, 楚正绪, 苏定冯. 腺苷的心血管作用. 药理学进展[M]. 北京: 科学出版社, 2000, 54-60.
[117] Greene R W, Haa H L. The electrophysiology of adenosine in the mammalian central nervous system[J]. Prog Neurobiol, 1991, 36(4): 329-341.
[118] M Lee Haselkorn, David Shellington, Edwin K Jackson, et al. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice[J]. J Neurotrauma, 2010, 27(5): 901-910.
[119] Miao-Kun Sun, Xu Hui, Daniel Leon Alkon. Pharmacological protection of synaptic function spatial learning and memory from transient hypoxia in rats[J]. J Pharmacol Exp Ther, 2002, 300(2): 408-416.
[120] Grace S Pereira, Tadeu Mello e Souza, Elsa R C Vinade, et al. Blockade of adenosine A1 receptors in the posterior cingulate cortex facilitates memory in rats[J]. Eur J Pharmacol, 2002, 437(3): 151-154.
[121] Nelson Rebola, Rafel Lujan, Rodrigo A Cunha, et al. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses[J]. Neuron, 2008, 57(1): 121-134.
[122] Tchekalarova J, Kambourova T, Georgiev V. Interaction of angiotensin Ⅱ and Ⅲ with A(1) receptor-related drugs in passive avoidance conditioning in rat[J]. Behav Brain Res, 2002, 129 (1-2): 61-64.
[123] Houman Homayoun, Simin Khavandgar, Mohammad Reza Zarrindast. Effects of adenosine receptor agonists and antagonists on pentylenetetrazole-induced amnesia[J]. Eur J Pharmacol, 2001, 430 (2-3): 289-294.
[124] Hauber W, Bareiss A. Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: selective enhancement of reference memory retention during the light period[J]. Behav Brain Res, 2001, 118(1): 43-52.
[125] Keiichi Tabata, Kinzo Matsumoto, Yukihisa Murakami, et al. Ameliorative effects of paeoniflorin, a major constituent of peony root, on adenosine A1 receptor-mediated impairment of passive avoidance performance and long-term potentiation in the hippocampus[J]. Biol Pharm Bull, 2001, 24(5): 496-500.
[126] Michael M Halassa, Cedrick Florian, Tommaso Fellin, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss[J]. Neuron, 2009, 61(2): 213-219.
[127] Olney J W, Labruyere J, Wang G, et al. NMDA antagonist neurotoxicity: mechanism and prevention[J]. Science, 1991, 254(3): 1515-1518
[128] 张丹参, 任雷鸣. 腺苷A1受体阻断剂对学习记忆的影响及机制分析[J]. 药学学报, 2003, 38(6): 416-419.
[129] 张丹参, 任雷鸣, 张力. 腺苷A1受体阻断剂对学习记忆的影响与胆碱能神经的关系[J]. 中国药科大学学报, 2006, 37(1): 63-66.
[130] 张丹参, 任雷鸣, 张力. 腺苷A1受体阻断剂对大鼠海马BDNF蛋白表达及内质网的影响[J]. 中国药理学通报, 2006, 2: 212-215.
[131] 张丹参, 任雷鸣, 张力. 腺苷A1受体和NMDA受体在海马齿状回突触传递活动中的关系[J]. 药学学报, 2004, 39(4): 245-249.
[132] Naoe Okamura, Kenji Hashimoto, Eiji Shimizu, et al. Adenosine A(1) receptor agonists block the neuropathological changes inrat Retrosplenial cortex after administration of the NMDA receptor antagonist dizocilpine[J]. Neuropsychopharmacology, 2004, 29(3): 544-550.
[133] Assi A A. N6-cyclohexyladenosine and 3-(2-carboxypiperazine-4-yl)-1- propenyl-1-phosphonic acid enhance the effect of antiepileptic drugs against induced seizures in mice[J]. J Pharm Pharm Sci, 2001, 4 (1): 42-51.
[134]Eero Castren, Hen Rene. Neuronal plasticity and antidepressant actions[J]. Trends Neurosci, 2013, 36(5): 259-267.
[135]Dimitri M Kullmann, Karri Lamsa. Long-term synaptic plasticity in hippocampal interneurons[J]. Nat Rev Neurosci, 2007, 8(9): 687-699.
[136] Sam Cooke, Bliss T V P. Plasticity in the human central nervous system[J]. Brain, 2006, 129(7): 1659-1673.
[137] Elek Molnr. Long-term potentiation in cultured hippocampal neurons[J]. Semin Cell Dev Biol, 2011, 22(5): 506-513.
[138] Hugo Vara Rivera, J Muñoz-Cuevas, Asun Colino. Age-dependent alterations of long-term synaptic plasticity in thyroid-deficient rats[J]. Hippocampus, 2003, 13(7): 816-825.
[139] 杨姝, 石玉秀. LTP与PTSD发病机制的相关性及研究进展[J]. 解剖科学进展, 2011, 17(2): 171-173.
[140] Graham L Collingridge, Stephane Peineau, John G Howland, et al. Long-term depression in the CNS[J]. Nat Rev Neurosci, 2010, 11(7): 459-473.
[141] Ge Yuan, Dong Zhi-fang, Rosemary C Bagot, et al. Hippocampal long-term depression is required for the consolidation of spatial memory[J]. Proc Natl Acad Sci USA, 2010, 107(38): 16697-16702.
[142] 黄彦猷. N-甲基-D-门冬氨酸受体通道复合体[J]. 生理科学进展, 1989, 20(1): 67-69.
[143] 张丹参, 张力, 张士善. 脯氨酸与学习记忆的关系[J]. 中国药理学通报, 1990(5): 280-281.
[144] 董晓华, 张丹参. NMDA受体对学习记忆影响的双向性[J]. 医学综述, 2005, 11(7): 603-604.
[145] Clarke R Raymond, David R Ireland, Wickliffe C Abraham. NMDA receptor regulation by amyloid-beta dose not account for its inhibition of LTP in rat hippocampus[J]. Brain Res, 2003, 968(2): 263-272.
[146] 齐建国. 神经科学扩展[M]. 北京: 人民卫生出版社, 2011: 258-263.
[147] Maria Veronica Baez, Maria Victoria Oberholzer, Magali Cecilia Cercato, et al. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open filed and after LTP induction[J]. PLoS One, 2013, 8(2): e55244.
[148] Wang Ya, Chen Ting-ting, Yuan Zi-hao, et al. Ras inhibitor S-trans, trans-farnesylthiosalicylic acid enhances spatial memory and hippocampal long-term potentiation via up-regulation of NMDA receptor[J]. Neuropharmacology, 2018, 139: 257-267.
[149] 王晓鹏, 黄永杰, 王芳, 等. NMDA受体及其亚基NR2与糖尿病认知功能障碍发病关系的研究进展[J]. 昆明医科大学学报, 2013, 34(12): 149-152.
[150] Magdalena Sanhueza, German Fernandez. CaMKII: A master functional and structural molecule in synaptic plasticity and memory[J]. Novel Mechanisms of Memory, 2016: 43-66.
[151] 张夏微, 张丹参. 雌激素和Glu-NMDA受体通路与学习记忆相关性的研究进展[J]. 神经药理学报, 2011, 1(6): 48-59.
[152] Li C, Dong S, Wang H, et al. Microarray analysis of gene expression change in the brains of NR2B-induced memeory-enhanced mice[J]. Neuroscience, 2011, 197: 121-131.
[153] Jakob von Engelhardt, Beril Doganci, Vidar Jensen, et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks[J]. Neuron, 2008, 60(5): 846-860.
[154] Wang De-heng, Cui Zhen-zhong, Zeng Qing-wen, et al. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats[J]. PLoS One, 2009, 4: e7486
[155] 陈谊, 蔡文玮, 盛净. 糖尿病模型大鼠认知功能障碍及海马N-甲基-D-天冬氨酸受体表达变化[J]. 实用医学杂志, 2010, 26(17): 3098-3101.
[156] Matthew L Baum, Pradeep Kurup, Xu Jian, et al. A STEP forward in neural function and degeneration[J]. Commun Integr Biol, 2010, 3(5): 419-422.
[157] Surojit Paul, John A Connor. NR2B-NMDA receptor mediated increases in the intracellular Ca2+ concentration regulate the tyrosine phosphatase, STEP, and ERK MAP kinase signaling[J]. J Neurochem, 2010, 114(4): 1107-1118.
[158] Raik Rönicke, Marina Mikhaylova, Sabine Rönicke, et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors[J]. Neurobiol Aging, 2011, 32(12): 2219-2228.
[159] 刘志娟, 吕佩源. 脑源性神经营养因子在突触可塑性中的作用[J]. 国际神经病学神经外科学杂志, 2015, 42(2): 185-188.
[160] Jamie Peters, Laura M Dieppa-Perea, Loyda M Melendez, et al. Induction of fear extinction with hippocampal-infralimbic BDNF[J]. Science, 2010, 328(5983): 1288-1290.
[161] Emily G Waterhouse, An Juan-ji, Lauren L Orefice, et al. BDNF promotes differentiation and maturation of adult-born neurons through GABA ergic transmission[J]. J Neurosci, 2012, 32(41): 14318-14330.
[162] Wen-yu Tzeng, Chuang Jia-ying, Lin Li-ching, et al. Companions reverse stressor-induced decreases in neurogenesis and cocaine conditioning possibly by restoring BDNF and NGF levels in dentate gyrus[J]. Psychoneuroendocrinology, 2013, 38(3): 425-437.
[163] Mila Roceri, Francesca Cirulli, Cassandra Pessina, et al. Postnatal repeated maternal maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions[J]. Biol Psychiatry, 2004, 55(7): 708-714.
[164] Sivasankaran Balaratnasingam, Aleksandar Janca. Brain Derived Neurotrophic Factor: a novel neurotrophin involved in psychiatric and neurological disorders[J]. Pharmacol Ther, 2012, 134(1): 116-124.
[165] Pedro Bekinschtein, Martin Cammarota, Jorge H Medina. BDNF and memory processing[J]. Neuropharmacology, 2014, 76(Pt C): 677-683.
[166] Magdalena Miranda, Brianne A Kent, Juan Facundo Morici, et al. Molecular mechanisms in perirhinal cortex selectively necessary for discrimination of overlapping memories, but independent of memory persistence[J]. eNeuro, 2017, 4(5): 0293-17.
[167] Makoto Mizuno, Kiyofumi Yamada, He Jue, et al. Involvement of BDNF receptor TrkB in spatial memory formation[J]. Learn Mem, 2003, 10(2): 108-115.
[168] Jonathan L Brigman, Michael Feyder, Lisa M Saksida, et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit[J]. Learn Mem, 2008, 15(2): 50-54.
[169] Gareth R I Barker, E Clea Warburton, Timothy Koder, et al. The different effects on recognition memory of perirhinal kainate and NMDA glutamate receptor antagonism: Implications for underlying plasticity mechanisms[J]. J Neurosci, 2006, 26(13): 3561-3566.
[170] Tsuyoshi Nakai, Taku Nagai, Motoki Tanaka, et al. Girdin phosphorylation is crucial for synaptic plasticity and memory: A potential role in the interaction of BDNF/TrkB/Akt signaling with NMDA receptor[J]. J Neurosci, 2014, 34(45): 14995-15008.
[171] Makoto Mizuno, Kiyofumi Yamada, He Jue, et al. Involvement of BDNF receptor TrkB in spatial memory formation[J]. Learn Mem, 2003, 10(2): 108-115.
[172] Drake C T, Milner T A, Patterson S L. Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity[J]. J Neurosci, 1999, 19(18): 8009-8026.
[173] 段金旗, 马丽琼, 刘远林, 等. TERT基因转染BMSC血管性痴呆大鼠记忆功能及海马CA1区突触可塑性的影响[J]. 重庆医学, 2017, 46(10): 1300-1303.
[174] Magdalena Miranda, Kent Brianne A, Facundo Morici Juan, et al. NMDA receptors and BDNF are necessary for discrimination of overlapping spatial and non-spatial memories in perirhinal cortex and hippocampus[J]. Neurobiol Learn Mem, 2018, 155: 337-343.
[175] Elhoucine Messaoudi, Shui-Wang Ying, Tambudzai Kanhema, et al. Brainderived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo[J]. J Neurosci, 2002, 22(17): 7453-7461.
[176] Joseph C Madara, Eric S Levine. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission[J]. J Neurophysiol, 2008, 100(6): 3175-3184.
[177] Margarida V Caldeira, Carlos V Melo, Daniela B Pereira, et al. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons[J]. Mol Cell Neurosci, 2007, 35(2): 208-219.
[178] Yury Kovalchuk, Eric Hanse, Karl W Kafitz, et al. Postsynaptic induction of BDNF-mediated long-term potentiation[J]. Science, 2002, 295(5560): 1729-1734.
[179] 窦超, 张敏, 赵源征, 等. 甲状腺激素T3对大鼠脑缺血再灌注损伤后NGF和BDNF表达的影响研究[J]. 重庆医学, 2017, 46(15): 2030-2033.
[180] Huang Y, Li Z, Nan G. Effect of hippocampal-NBP on BDNF and TrkB expresssion and neurological function of vascular dementia rats[J]. Mol Med Rep, 2017, 16(5): 7673-7678.
[181] 房德芳, 江山, 李小雷, 等. 丙泊酚抗N-甲基-D-天冬氨酸毒性作用及其与脑源性神经营养因子表达的关系[J]. 重庆医学, 2018, 47(29): 3752-3754.
[182] Timothy W Bredy, Wu Hao, Cortney Crego, et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear[J]. Learn Mem, 2007, 14(4): 268-276.
[183] 徐芸, 孔宏, 宋倩, 等. 慢性应激对小鼠空间学习记忆功能及海马和前额叶皮层BDNF表达的影响[J]. 曲阜师范大学学报:自然科学版, 2009, 35(1): 85-89.
[184] 吴晨, 赵晓东, 宦冉, 等. 慢性应激后小鼠空间学习记忆功能及脑内BDNF表达的变化[J]. 科技视界, 2017(2): 40-41.
[185] Rattiner L M, Davis M, French C T, et al. BDNF and TrkB receptor involvement in amygdala dependent fear conditioning[J]. J Neurosci, 2004, 24(20): 4796-4806.
[186] Jasvinder K Atwal, Bernard Massie, Freda D Miller, et al. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase[J]. Neuron, 2000, 27(2): 265-277.
[187] Huang Shu-hong, Wang Jue, Sui Wen-hai, et al. BDNF-dependent recycling facilitates TrkB translocation to postsynaptic density during LTP via a Rab11-dependent pathway[J]. J of Neuroscience the Official J Society for Neuroscience. 2013, 33(21): 9214-9230.
[188] Lin Siang-Yo, Wu Kuo, Eric S Levine, et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities[J]. Brain Res Mol Brain Res, 1998, 55(1): 20-27.
[189] Margarida V Caldeira, Carlos V Melo, Daniela B Pereira, et al. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons[J]. Mol Cell Neurosci, 2007, 35(2): 208-219.
[190] Makoto Mizuno, Kiyofumi Yamada, Ana Olariu, et al. Involvement of brainderived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats[J]. J Neurosci, 2000, 20(20): 7116-7121.
[191] Meier P. Neurotrophins as synaptic modulators[J]. Nat Rev Neurosci, 2001, 2(1): 24-32.
[192] Torkel Falkenberg, Abdul Mohammed, Bengt Henriksson, et al. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocamous is associated with improved spatial memory and enriched environment[J]. Neurosci Lett, 1992, 138(1): 153-156.
[193] Susan L Patterson, Larry M Grover, Philip A Schwartzkroin, et al. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs[J]. Neuron, 1992, 9(6): 1081-1088.
[194] Martin Korte, Patrick Carroll, Eckhard Wolf, et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor[J]. Proc Natl Acad Sci USA, 1995, 92(19): 8856-8860.
[195] Martha L Escobar, Yazmin Figueroa-Guzmán, Andrea Gomez-Palacio-Schjetnan. In vivo insular cortex LTP induced by brain-derived neurotrophic factor[J]. Brain Res, 2003, 991(1-2): 274-279.
[196] Lu Bai. BDNF and activity-dependent synaptic modulation[J]. Learn Mem, 2003, 10(2): 86-98.
[197] Ana Luisa Carvalho, Margarida V Caldeira, Santos S D, et al. Role of the brain-derived neurotrophic factor at glutamatergic synapses[J]. Br J Pharmacol, 2008, 153(Suppl 1): S310-S324.
[198] Ma Y L, Wang H L, Wu H C, et al. Brain-derived neurotrophic factor antisense oligonucleotide impairs[J]. Neuroscience, 1998, 82(4): 957-967.
[199] Elhoucine Messaoudi, Ying Shui-Wang, Tambudzai Kanhema, et al. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo[J]. J Neurosci, 2002, 22(17): 7453-7461.
[200] Rattiner L M, Davis M, Ressler K J. Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning[J]. Learn Mem, 2004, 11(6): 727-731.
[201] 李勇, 叶桂兰. LTP研究进展(Ⅲ)-LTP和神经趋向因子[J]. 神经疾病与精神卫生, 2002, 2(5): 305-309.
[202] Pascal Jourdain, Linda Bergersen, Khaleel Bhaukaurally, et al. Glutamate exocytosis from astrocytes controls synaptic strength[J]. Nat Neurosci, 2007, 10(3): 331-339.
[203] 邱瑜, 陈红专, 金正均. 谷氨酸的兴奋和氧化神经毒性及其机制的研究进展. 药理学进展[M]. 北京: 科学出版社, 2001, 52-57.
[204] Huang Yan-hua, Dwight E Bergles. Glutamate transporters bring competition to the synapse[J]. Curr Opin Neurobiol, 2004, 14(3): 346-352.
[205] Kinga Szydlowska, Michael Tymianski. Calcium, ischemia and excitotoxicity[J]. Cell Calcium, 2010, 47(2): 122-129.
[206] Marco Milanese, Tiziana Bonifacino, Simona Zappettini, et al. Glutamate release from astrocytic gliosomes under physiological and pathological conditions[J]. Int Rev Neurobiol, 2009, 85: 295-318.
[207] James Vornov, Joseph T Coyle. Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice[J]. J Neurochem, 1991, 56(3): 996-1006.
[208] Newell D W, Barth A, Papermaster V, et al. Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures[J]. J Neurosci, 1995, 15(11): 7702-7711.
[209] Greene J G, J Timothy Greenamyre. Exacerbation of NMDA, AMPA and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate[J]. J Neurochem, 1995, 64(5): 2332-2338.
[210] Gwag B J, Lobner D, Koh J Y, et al. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro[J]. Neuroscience, 1995, 68(3): 615-619.
[211] 邱瑜, 陈红专, 金正均. 谷氨酸神经细胞毒作用的新途径-谷氨酸/胱氨酸转运体介导机制[J]. 中国药理学通报, 2000, 16(3): 251-253.
[212] Liu Ping, Zhen Yi-wen, King J, et al. Long-term changes in hippocampal N-methyl-D-aspartate receptor subunits following unilateral vestibular damage in rat[J]. Neurosci, 2003, 117(4): 965-970.
[213] 刘芳, 严进, 姜宗来. CNTF对NMDA引起大鼠海马神经元NOS活性改变的影响[J]. 细胞生物学杂志, 2003, 25(2): 113-115.
[214] 曹江北, 李云峰, 米卫东. 丙泊酚对N-甲基-D-天冬氨酸所致PC12细胞损伤的保护作用[J]. 中国药理学与毒理学杂志, 2003, 17(3): 202-206.
[215] Li J T, Zhao Y Y, Wang H L, et al. Long-term effects of neonatal exposure to MK-801 on recognition memory and excitatory-inhibitory balance in rat hippocampus[J]. Neuroscience, 2015, 308: 134-143.
[216] Nobuki Nakanishi, Tu Shi-chun, Yeonsook Shin, et al. Neuroprotection by the NR3A subunit of the NMDA receptor[J]. Neurosci, 2009, 29(16): 5260-5265.
[217] Robert Crozier, Bi Cai-xia, Han Yu R, et al. BDNF modulation of NMDA receptors is activity dependent[J]. J Neurophysiol, 2008, 100(6): 3264-3274.
[218] Karthik Bodhinathan, Ashok Kumar, Thomas C Foster. Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II[J]. J Neurosci, 2010, 30(5): 1914-1924.
[219] Lu Cheng-wei, Lin Tzu-Yu, Wang Su-Jane. Memantine depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebral cortex nerve terminals: an NMDA receptor-independent mechanism[J]. Neurochem Int, 2010, 57(2): 168-176.
[220] Suvanish Kumar, Aswathi Gopalakrishnan, Naziro?lu M, et al. Calcium ion-the key player in cerebral ischemia[J]. Curr Med Chem, 2014, 21(18): 2065-2075.
[221] Lorella M Canzoniero, Alberto Granzotto, Dorothy M Turetsky, et al. nNOS(+) striatal neurons, a subpopulation spared in Huntington’s Disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge[J]. Front Physiol, 2013, 4:112.
[222] Chen Zhou-mou, Carolina Muscoli, Tim Doyle, et al. NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing[J]. Pain, 2010, 149(1): 100-106.
[223] Yukitoshi Izumi, Charles F Zorumski. Neuroprotective effects of pyruvate following NMDA-mediated excitotoxic insults in hippocampal slices[J]. Neurosci Lett, 2010, 478(3): 131-135.
[224] Hu Zhen-yu, Bian Xi-ling, Liu Xiao-yan, et al. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction[J]. Brain Res, 2013, 1491: 204-212.
[225] James A Dykens. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration[J]. J Neurochem, 1994, 63(2): 584-591.
[226] Yang Jian, Pek Lan Khong, Wang Yan-xin, et al. Manganese-enhanced MRI detection of neurodegenration in neonatal hypoxic-ischemic cerebral injury[J]. Magn Reson Med, 2008, 59(6): 1329-1339.
[227] Aaron K Holley, Sanjit Kumar Dhar, Xu Yong, et al. Manganese superoxide dismutase: beyond life and death[J]. Amino Acids, 2012, 42(1): 139-158.
[228] Kee Dong Yoon, Suk Nam Kang, Ji-Yeong Bae, et al. Enhanced antioxidant and protective activities on retinal ganglion cells of carotenoids-overexpressing transgenic carrot[J]. Curr Drug Target, 2013, 14(9): 999-1005.
[229] Geoffroy Laumet, Chen Shao-rui, Pan Hui-lin. NMDA receptors and signaling in chronic neuropathic pain[M]. Springer, 2017: 103-119.
[230] Tang Bin, Ji Ya-ping, Richard J Trau. Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat[J]. Pain, 2008, 137(3): 540-549.
[231] 王佳敏, 郭怡菁. 自身免疫性脑炎相关抗体的研究进展[J]. 东南大学学报:医学版, 2018, 37(3): 540-544.
[232] Harry E Peery, Gregory S Day, Shannon Dunn, et al. Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology[J]. Autoimmun Rev, 2012, 11(12): 863-872.
[233] Chen Chu, Mattie Hardy, Zhang Jian, et al. Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments[J]. Biochem Biophys Res Commun, 2005, 340(2): 435-440.
[234] 罗海龙, 贾茜, 姜爱英, 等. N-甲基-D-天冬氨酸受体阻断对大鼠海马神经元癫痫样放电模型泛连接蛋白-1表达的影响[J]. 中国老年学杂志, 2017, 37(23): 5752-5755.
[235] 王海芳, 张钢, 张彦春, 等. 糖尿病小鼠认知功能障碍的NMDAR机制研究[J]. 河北医药, 2018, 40(1): 41-44.
[236] Jasbeer Dhawan, Helene Benveniste, Marta Nawrocky, et al. Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors [J]. Neuroimage, 2010, 51(2): 599-605.
[237] Tetsuya Abe, Shinji Matsumura, Tayo Katano, et al. Fyn kinase-mediated phosphoryation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain [J]. Eur J Neurosci, 2005, 22(6): 1445-1454.
[238] Shih-Jen Tsai, Liu Hsiu-Chih, Liu Yun, et al. Association analysis for the genetic variants of the NMDA receptor subunit 2b and Alzheimer's disease[J]. Dement Geriatr Cogn Disord, 2002, 13(2): 91-94.
[239] Sungho Maeng, Carlos A Zarate. The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumedcellular mechanism underlying its antidepressant effects[J]. Curr Psychiatry Rep, 2007, 9(6): 467-474.
[240] Cousins S L, Kenny A V, Stephenson F A. Delineation of additional PSD-95 binding domains with NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association[J]. Neuroscience, 2009, 158(1): 89-95. |