Acta Neuropharmacologica ›› 2018, Vol. 8 ›› Issue (2): 1-7.DOI: 10.3969/j.issn.2095-1396.2018.02.001
SUN Yi,TAN Bo,SU Rui-bin
Online:
2018-04-26
Published:
2018-04-16
Contact:
谭博,男,助理研究员;研究方向:神经精神药理学;Tel:+86-010-66874604,E-mail:whutanbo@gmail.com
苏瑞斌,男,研究员;研究方向:神经精神药理学;Tel:+86-010-66931601,E-mail:ruibinsu@126.com
About author:
孙毅,女,博士研究生;研究方向:神经精神药理学;Tel:+86-010-66874604,E-mail:surisun@yeah.net
Supported by:
国家自然科学基金项目(No. 81773709)
CLC Number:
SUN Yi,TAN Bo,SU Rui-bin. Biased Ligand——Novel Paradigm for Opioid Analgesics[J]. Acta Neuropharmacologica, 2018, 8(2): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2018.02.001
【1】 Thompson G L, Kelly E, Christopoulos A, et al. Novel GPCR paradigms at the mu-opioid receptor[J]. J British pharmacology, 2015, 172(2):287-296.【2】 Andrew Kolodny, David T Courtwright, Courtwright S Hwang, et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction[J]. Annual Review of Public Health, 2015, 36:559-574.【3】 Imam MZ, Kuo A, Ghassabian S, et al. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression[J]. Neuropharmacology, 2017, 131:238-255.【4】 Richard G Frank, Harold A Pollack. Addressing the fentanyl threat to public health[J]. J New England Medicine, 2017, 376(7):605-607.【5】 Nora D Volkow, A Thomas McLellan. Opioid abuse in chronic pain--misconceptions and mitigation strategies[J].J New England Medicine, 2016, 374(13):1253-1263.【6】 Gavril W Pasternak. Opioids and their receptors: Are we there yet? [J]. Neuropharmacology 2014, 76 Pt B:198-203.【7】 Hughes J, Smith T W, Kosterlitz H W, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity[J]. Nature, 1975, 258(5536): 577-580.【8】 Gilbert PE, Martin WR: The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog[J]. J Pharmacology and Experimental Therapeutics, 1976, 198(1):66-82.【9】 Hans W D Matthes, Rafael Maldonado, Frederic Simonin, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene[J]. Nature, 1996, 383(6603):819-823.【10】 Jonathan D Violin, Aimee L Crombie, David G Soergel, et al. Biased ligands at G-protein-coupled receptors: promise and progress[J]. Trends in Pharmacological Sciences, 2014, 35(7):308-316.【11】 Huang Wei-jiao, Aashish Manglik, A J Venkatakrishnan, et al. Structural insights into micro-opioid receptor activation[J]. Nature, 2015, 524(7565):315-321.【12】 Attramadal H, Arriza J L, Aoki C, et al. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family[J]. J Biological Chemistry, 1992, 267(25):17882-17890.【13】 Oakley R H, Laporte S A, Holt J A, et al. Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors[J]. J Biological Chemistry, 2000, 275(22):17201-17210.【14】 Yuri K Peterson, Louis M Luttrell. The diverse roles of arrestin scaffolds in g protein-coupled receptor signaling[J]. Pharmacological Reviews, 2017, 69(3):256-297.【15】 Louis M Luttrell, Robert J Lefkowitz. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals[J]. J Cell Science, 2002, 115(Pt 3): 455-465.【16】 Kirsten M Raehal, Laura M Bohn. beta-arrestins: regulatory role and therapeutic potential in opioid and cannabinoid receptor-mediated analgesia[J]. Handbook of Experimental Pharmacology, 2014, 219:427-443.【17】 Reddy Peera Kommaddi, Sudha K Shenoy. Arrestins and protein ubiquitination[J]. Progress in Molecular Biology and Translational Science, 2013, 118:175-204.【18】 McDonald P H, Lefkowitz R J. Beta-Arrestins: new roles in regulating heptahelical receptors' functions[J]. Cellular Signalling, 2001, 13(10):683-689.【19】 Laporte S A, Oakley R H, Zhang J, et al. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3712-3717.【20】 Sudha K Shenoy. Seven-transmembrane receptors and ubiquitination[J]. Circulation research 2007, 100(8):1142-1154.【21】 Sudha K Shenoy, Xiao Kun-hong, Vidya Venkataramanan, et al. Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor[J]. J Biological Chemistry, 2008, 283(32):22166-22176.【22】 Luttrell L M, Ferguson S S, Daaka Y, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes[J]. Science (New York, NY), 1999, 283(5402):655-661.【23】 Erik G Strungs, Louis M Luttrell. Arrestin-dependent activation of ERK and Src family kinases[J]. Handbook of Experimental Pharmacology, 2014, 219:225-257.【24】 Gong Kai-zheng, Li Zi-jian, Xu Ming, et al. A novel protein kinase A-independent, beta-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by beta2-adrenergic receptors[J]. J Biological Chemistry, 2008, 283(43): 29028-29036.【25】 Patricia H McDonald, Chi-Wing Chow, William E Miller, et al. A receptor-regulated MAPK scaffold for the activation of JNK3[J]. Science (New York, NY), 2000, 290(5496):1574-1577.【26】 Pierce K L, Lefkowitz R J: Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors[J]. Nature Reviews Neuroscience, 2001, 2(10):727-733.【27】 Samama P, Cotecchia S, Costa T, et al. A mutation-induced activated state of the beta 2-adrenergic receptor[J]. Extending the ternary complex model. The Biological Chemistry, 1993, 268(7):4625-4636.【28】 Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals[J]. Trends in Pharmacological Sciences, 1995, 16(7):232-238.【29】 Dean P Staus DP, Strachan RT, Manglik A, et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation[J]. Nature, 2016, 535(7612):448-452.【30】 Manglik A, Kruse A C. Structural basis for g protein-coupled receptor activation[J]. 2017, 56(42):5628-5634.【31】 Terry P Kenakin, Arthur Christopoulos. Signalling bias in new drug discovery: detection, quantification and therapeutic impact[J]. Nature Reviews Drug discovery, 2013, 12(3):205-216.【32】 Kelly E. Efficacy and ligand bias at the mu-opioid receptor[J]. British J Pharmacology, 2013, 169(7):1430-1446.【33】 Laura M Bohn, Robert J Lefkowitz, Raul R Gainetdinov, et al. Enhanced morphine analgesia in mice lacking beta-arrestin 2[J]. Science (New York, NY), 1999, 286(5449): 2495-2498.【34】 Laura M Bohn, Raul R Gainetdinov, Lin Fang-Tsyr, et al. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence[J]. Nature, 2000, 408(6813):720-723.【35】 Laura M Bohn, Robert J Lefkowitz, Marc G Caron. Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice[J]. The J Neuroscience : Official J Society for Neuroscience, 2002, 22(23):10494-10500.【36】 Bohn L M, Gainetdinov R R, Caron M G. G protein-coupled receptor kinase/beta-arrestin systems and drugs of abuse: psychostimulant and opiate studies in knockout mice[J]. Neuromolecular Medicine 2004, 5(1):41-50.【37】 Kirsten M Raehal, Laura M Bohn. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics[J]. Neuropharmacology, 2011, 60(1):58-65.【38】 Barhara Przewlocka, Agnieszka Sieja, Katarzyna Starowicz, et al. Knockdown of spinal opioid receptors by antisense targeting beta-arrestin reduces morphine tolerance and allodynia in rat[J]. Neuroscience Letters, 2002, 325(2):107-110.【39】 Cullen Schmid, Nicole M Kennedy, Nicolette C Ross, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics[J]. Cell, 2017, 171(5):1165-1175.e1113.【40】 Zhou X Edward, He Yuan-zheng, Parker W de Waal, et al. Identification of phosphorylation codes for arrestin recruitment by g protein-coupled receptors[J]. Cell, 2017, 170(3):457-469.e413.【41】 Scott M DeWire, Dennis S Yamashita, David H Rominger, et al. A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine[J]. J Pharmacology Experimental Therapeutics, 2013, 344(3):708-717.【42】 Neil Singla, Harold S Minkowitz, David G Soergel, et al. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel micro-receptor G-protein pathway selective (mu-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty[J]. J Pain Research, 2017, 10:2413-2424.【43】 Aashish Manglik, Lin Henry, Dipendra Aryal, et al. Structure-based discovery of opioid analgesics with reduced side effects[J]. Nature, 2016, 537(7619):185-190.【44】 Neil Burford, Traynor J R, Alt A. Positive allosteric modulators of the mu-opioid receptor: a novel approach for future pain medications[J]. British journal of pharmacology 2015, 172(2):277-286.【45】 Martin C Michel, Steven J Charlton. Biased agonism in drug discovery - is it too soon to choose a path? [J]. Molecular Pharmacology, 2018, 93(4):mol.117.110890. |
[1] | LIU Xuan, TENG Jin-liang. Effect of Dexmedetomidine on Perioperative Analgesia [J]. Acta Neuropharmacologica, 2019, 9(6): 41-46. |
[2] | ZHAO Peng-hui,PANG Ce,ZHEN Pan. A New Idea to Treat Glioma with Mulberin [J]. Acta Neuropharmacologica, 2019, 9(5): 44-49. |
[3] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[4] | LIN Zhi-bin. Pharmacological Progress of Ganoderma on Anti-aging and Anti-Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(1): 9-15. |
[5] | ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen. Research Progress of the Role and Underlying Mechanism of Dynorphin/κ Opioid Receptor in the Development of Depression [J]. Acta Neuropharmacologica, 2018, 8(1): 54-64. |
[6] | WANG Bao-lei,WANG Jia,GUO Chun-yan. Study on Antithrombotic Mechanism Based on Platelet Pathway [J]. Acta Neuropharmacologica, 2017, 7(5): 34-38. |
[7] | WAN Ye,GUO Chun-yan,LI Yong-min. Research Progress of Traditional Chinese Medicine in Parkinson’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 36-42. |
[8] | TIAN You,WANG Xue,AI Jing. Research Progress of Basal Forebrain Cholinergic Dysfunction in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 53-64. |
[9] | ZHANG Li-hang, YIN Ming. Thinking of Influences of Small Molecules on Neural Stem Cell Neurogenesis [J]. Acta Neuropharmacologica, 2017, 7(1): 1-9. |
[10] | LUO Piao,CHU Shi-feng,CHEN Nai-hong. Progress on Adipokines Participating in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(1): 45-52. |
[11] | SUN Zhi-hua,LUO Su-lan. Nicotinic Acetylcholine Receptors and Diseases [J]. Acta Neuropharmacologica, 2017, 7(1): 53-64. |
[12] | GAO Jin-chao, ZHAO Wen-juan, YIN Ming. Progress in the Relationship of Apolipoprotein E4 on Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2016, 6(6): 31-39. |
[13] | WANG Lin-fang,HUANG Shu-bing,XU Yi-da,CUI Chun,SHEN Yan-qin. Effects of Loganin on MPTP-Induced Autophagy in PC12 Cells [J]. Acta Neuropharmacologica, 2016, 6(5): 14-21. |
[14] | SU Xiao-mei,ZHANG Dan-shen. Advances of Targeted Drug Delivery Based on PEG-PCL [J]. Acta Neuropharmacologica, 2016, 6(5): 22-28. |
[15] | DU Guan-tao,ZHANG Chun-teng,HONG Hao. Progress on Research of 5-Lipoxygenase in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2016, 6(5): 39-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||