Acta Neuropharmacologica ›› 2018, Vol. 8 ›› Issue (1): 54-64.DOI: 10.3969/j.issn.2095-1396.2018.01.007
ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen
Online:
2018-02-26
Published:
2018-06-04
Contact:
刘景根,男,研究员,博士;研究方向:神经药理学;Tel:+86-021-50807588,E-mail:jgliu@mail.shcnc.ac.cn
About author:
昝桂影,女,博士;研究方向:神经药理学;E-mail:zanguiying@126.com
Supported by:
科技部基金项目(No. 2015CB553500),国家自然科学基金项目(No. 81671322、81401107)
CLC Number:
ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen. Research Progress of the Role and Underlying Mechanism of Dynorphin/κ Opioid Receptor in the Development of Depression[J]. Acta Neuropharmacologica, 2018, 8(1): 54-64.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2018.01.007
[1] Ronald C Kessler, Evelyn J Bromet. The epidemiology of depression across cultures [J]. Annu Rev Publi Health, 2013, 34: 119-138.[2] 何海然, 薛占霞. 抑郁症相关发病机制的研究进展 [J]. 神经药理学报, 2016, 6(2): 20-25.[3] 我国精神疾病患者人数超1亿多数是抑郁症患者[Z], 人民日报(2016-10-14),北京。[4] George T Taylor, Francesca Manzella. Kappa opioids, Salvinorin A and major depressive disorder [J]. Curr Neuropharmacol, 2016, 14(2): 165-176.[5] William A Carlezon, Cecile Beguin, Allison T Knoll, et al. Kappa-opioid ligands in the study and treatment of mood disorders [J]. Pharmacol Ther, 2009, 123(3): 334-343.[6] Allison T Knoll, William A Carlezon Jr. Dynorphin, stress, and depression [J]. Brain Res, 2010, 1314: 56-73.[7] Bruchas M R, Land B B, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors [J]. Brain Res, 2010, 1314: 44-55.[8]谢小虎, 周文华, 杨国栋. κ阿片受体研究新进展[J]. 中国药物依赖性杂志, 2000, (03): 166-169.[9] McLaughlin J P, Marton-Popovici M, Chavkin C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses [J]. J Neurosci, 2003, 23(13): 5674-5683.[10] Carr GV, Bangasser DA, Bethea T, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats [J]. Neuropsychopharmacology, 2010, 35(3): 752-763.[11] Wang Yu-jun, Khampaseuth Rasakham, Huang Peng, et al. Sex difference in κ-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig [J]. J Pharmacol Exp Ther, 2011, 339(2): 438-450.[12] 邹冈, 张昌绍. 脑室内或脑组织内微量注射吗啡的镇痛效应[J].生理学报, 1962, 25:119—128[13] 李凌江,马宁. 应激和抑郁[J]. 临床精神医学杂志, 2014, 01:69-70. [14] Benjamin B Land, Michael R Bruchas, Julia C Lemos, et al. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system [J]. J Neurosci 2008, 28(2): 407-414.[15] Michael R Bruchas, Benjamin B Land, Megumi Aita, et al. Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria [J]. J Neurosci, 2007, 27(43): 11614-11623.[16]Beverly A S Reyes, Guy Drolet, E J Van Bockstaele. Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents [J]. J Comp Neurol, 2008, 508(4): 663-675.[17] Michael R Bruchas, Benjamin B Land, Julia C Lemos, et al. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior [J]. PLoS One, 2009, 4(12): e8528.[18] Katia Gysling. Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behavior [J]. Biochem Pharmacol, 2012, 83(1): 1-5.[19] Minh P Lam, Christina Gianoulakis. Effects of corticotropin-releasing hormone receptor antagonists on the ethanol-induced increase of dynorphin A1-8 release in the rat central amygdala [J]. Alcohol, 2011, 45(7): 621-630.[20]龚雪. γ-氨基丁酸对小鼠焦虑样行为及认知功能的影响[D].上海: 复旦大学, 2013.[21]Kang-Park M, Kieffer B L, Roberts A J, et al. Interaction of CRF and kappa opioid systems on GABAergic neurotransmission in the mouse central amygdala [J]. J Pharmacol Exp Ther, 2015, 355(2): 206-211. [22] William A Carlezon, Cecile Béguin, Jennifer A DiNieri , et al. Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats [J]. J Pharmacol Exp Ther, 2006, 316(1): 440-447.[23] Stephanie R Ebner, Mitchell F Roitman, David N Potter, et al. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens [J]. Psychopharmacology (Berl) 2010, 210(2): 241-252.[24] Shayla E Russell, Anna B Rachlin, Karen L Smith, et al. Sex differences in sensitivity to the depressive-like effects of the kappa opioid receptor agonist U-50488 in rats [J]. Biol Psychiatry, 2014, 76(3): 213-222.[25] Mitch Harden, Staci E Smith, Jennifer A Niehoff, et al. Antidepressive effects of the kappa-opioid receptor agonist salvinorin A in a rat model of anhedonia [J]. Behav Pharmacol, 2012, 23(7): 710-715.[26] Wang Qian, Long Yu, Hang Ai, et al. The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice [J]. Psychopharmacology (Berl), 2016, 233(12): 2411-2418.[27] 龙玉. ATPM-ET的抗焦虑、抗抑郁作用评价及机制研究[D]. 大连: 大连医科大学, 2016.[28] Jay P McLaughlin, Li Shuang, Joseph Valdez, et al. Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system [J]. Neuropsychopharmacology, 2006, 31(6): 1241-1248.[29] Matthew D Wiley, Laura B Poveromo, John Antapasis, et al. Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate [J]. Neuropsychopharmacology, 2009, 34(5): 1339-1350.[30] Edgardo Falcon, Kaitlyn Maier, Shivon A Robinson, et al. Effects of buprenorphine on behavioral tests for antidepressant and anxiolytic drugs in mice [J]. Psychopharmacology (Berl), 2015, 232(5).[31] Charlotte K Callaghan, Jennifer Rouine, Reginald L Dean, et al. Antidepressant-like effects of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid receptor modulator, in a rat IFN-α-induced depression model [J]. Brain Behav Immun, 2017, 67:152-162.[32] Abdulrahman Almatroudi, Mehrnoosh Ostovar, Christopher P Bailey, et al. Antidepressant-like effects of BU10119, a novel buprenorphine analogue with mixed kappa/mu opioid receptor antagonist properties, in mice[J]. Br J Pharmacol, 2017, DOI: 10.1111/bph.14060.[33] Daniela Braida, Valeria Capurro, Alessia Zani, et al. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents [J]. Br J Pharmacol, 2009, 157(5): 844-853.[34] Cindee F Robles, Marissa Z McMackin, Katharine L Campi, et al. Effects of kappa opioid receptors on conditioned place aversion and social interaction in males and females [J]. Behav Brain Res, 2014, 262: 84-93.[35] Elena Chartoff, Allison Sawyer, Anna Rachlin, et al. Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats [J]. Neuropharmacology, 2012, 62(1): 167-176.[36] Lalanne L, Ayranci G, Filliol D, et al. Kappa opioid receptor antagonism and chronic antidepressant treatment have beneficial activities on social interactions and grooming deficits during heroin abstinence [J]. Addict Biol, 2017, 22 (4): 1010-1021.[37] Reindl J D, Rowan K, Carey A N, et al. Antidepressant-like effects of the novel kappa opioid antagonist MCL-144B in the forced-swim test [J]. Pharmacology, 2008, 81(3): 229-235.[38] 李婧, 孙建栋, 苑玉和, 等.谷氨酸能神经传递在抑郁症发病机制中作用的研究进展[J]. 神经药理学报, 2014, 3(1): 20-24。[39] Danielle M Gerhard, Eric S Wohleb, Ronald S Duman. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity [J]. Drug Discov Today, 2016, 21(3):454-464.[40] Ronald S Duman. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections [J]. Dialogues Clin Neurosci, 2014, 16(1):11-27.[41] Gregory O Hjelmstad, Howard L Fields. Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms [J]. J Neurophysiol, 2003, 89(5): 2389-2395.[42] Hugo A Tejeda, Ashley N Hanks, Liam Scott, et al. Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs [J]. Neuropsychopharmacology, 2015, 40(13): 2856-2864.[43] Nicole A Crowley, Daniel W Bloodgood, J Andrew Hardaway, et al. Dynorphin controls the gain of an amygdalar anxiety circuit [J]. Cell Rep, 2016, 14(12):2774-2783.[44] Guo Ming-yan, Cao De-xiong, Zhu Si-yu et al. Chronic exposure to morphine decreases the expression of EAAT3 via opioid receptors in hippocampal neurons [J]. Brain Res, 2015, 1628 (Pt A): 40-49.[45] 薛占霞, 彭亮. 情感性精神障碍疾病治疗药物的研究现状[J]. 神经药理学报, 2011, 1(1): 55-64[46] Tao Rui, Sidney Auerbach. mu-Opioids disinhibit and kappa-opioids inhibit serotonin efflux in the dorsal raphe nucleus [J]. Brain Res, 2005, 1049(1): 70-79.[47] Elena Zakharova, Stephanie L Collins, Maria Aberg, et al. Depletion of serotonin decreases the effects of the kappa-opioid receptor agonist U-69593 on cocaine-stimulated activity [J]. Eur J Pharmacol, 2008, 586(1-3): 123-129.[48] Santhanalakshmi Sundaramurthy, Balasubramaniam Annamalai, Devadoss J Samuvel, et al. Modulation of serotonin transporter function by kappa-opioid receptor ligands [J]. Neuropharmacology, 2017, 113 (Pt A): 281-292.[49] Abigail G Schindler, Daniel I Messinger, Jeffrey S Smith, et al. Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake [J]. J Neurosci, 2012, 32(49): 17582-17596.[50] Fuentealba J A, Gysling K, Andrés M E. Repeated treatment with the κ-opioid agonist U-69593 increases K+-stimulated dopamine release in the rat medial prefrontal cortex [J]. Synapse, 2010, 64(12): 898-904.[51] Nuannoi Chudapongse, Seong-Youl Kim, Robert Kramer, et al. Nonspecific effects of the selective kappa-opioid receptor agonist U-50,488H on dopamine uptake and release in PC12 cells [J]. J Pharmacol Sci, 2003, 93(3):372-375.[52] Bronwyn Kivell, Zeljko Uzelac, Santhanalakshmi Sundaramurthy. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism [J]. Neuropharmacology, 2014, 86: 228-240.[53] Antony D Abraham, Harrison M Fontaine, Allisa J Song. Kappa opioid receptor activation in dopamine neurons disrupts behavioral inhibition [J]. Neuropsychopharmacology, 2017, 43:362-372.[54] Ream Al-Hasani, Jordan G McCall, Audra M Foshage, et al. Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism [J]. Neuropsychopharmacology, 2013, 38(12): 2484-2497.[55] 夏军, 陈军, 周义成, 等. 抑郁症患者海马及杏仁核容积异常的MRI研究[J]. 中华放射学杂志, 2005, (02): 28-31. [56] Philip Gorwood. Neurobiological mechanisms of anhedonia [J]. Dialogues Clin Neurosci, 2008, 10(3): 291-299.[57] Garret D Stuber, Dennis R Sparta, Alice M Stamatakis, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking [J]. Nature, 2011, 475(7356): 377-380.[58] Allison T Knoll, John W Muschamp, Stephanie E Sillivan, et al. Kappa opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats [J]. Biol Psychiatry, 2011, 70(5): 425-433.[59] Stephanie K Nygard, Nicholas J Hourguettes, Gabe G Sobczak, et al. Stress-induced reinstatement of nicotine preference requires dynorphin/kappa opioid activity in the basolateral amygdala [J]. J Neurosci, 2016, 36(38): 9937-9948.[60] 王一赫, 江虹, 李颖, 等. 不同时程温和应激对大鼠海马神经元、T淋巴细胞亚群的动态影响 [J]. 中国临床心理学杂志, 2013, 21(05): 731-734.[61] 成翔, 张蕾, 姚莉红, 等. 慢性应激抑郁状态对大鼠海马神经元再生的影响 [J]. 神经解剖学杂志, 2013, 29(04): 431-434. [62] Carrie T Drake, Charles Chavkin, Teresa A Milner. Opioid systems in the dentate gyrus [J]. Prog Brain Res, 2007, 163: 245-263.[63] John J Wagner, Gregory W Terman, Charles Chavkin. Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus [J]. Nature, 1993, 363(6428): 451-454.[64] Yukihiko Shirayama, Hisahito Ishida, Masaaki Iwata, et al. Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects [J]. J Neurochem, 2004, 90(5): 1258-1268.[65] Stephanie Daumas, Alexandre Betourne, Helene Halley, et al. Transient activation of the CA3 Kappa opioid system in the dorsal hippocampus modulates complex memory processing in mice [J]. Neurobiol Learn Mem, 2007, 88(1): 94-103. [66] Carey A N, Lyons A M, Shay C F, et al. Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory [J]. J Neurosci, 2009, 29(13): 4293-4300.[67] Sante A B, Manoel J Nobre, Marcus L Brandão. Place aversion induced by blockade of mu or activation of kappa opioid receptors in the dorsal periaqueductal gray matter [J]. Behav Pharmacol, 2000, 11(7-8): 583-589.[68] George F Koob. Neurobiological substrates for the dark side of compulsivity in addiction [J]. Neuropharmacology, 2009, 56(Suppl 1): 18-31.[69] 俞纲. 中脑腹侧背盖区κ-阿片受体系统对吗啡依赖的调控作用[D].北京: 中国人民解放军军事医学科学院, 2009.[70] Elizabeth N Holly, Klaus A Miczek. Ventral tegmental area dopamine revisited: effects of acute and repeated stress [J]. Psychopharmacology (Berl), 2016, 233(2): 163-186.[71] William A Carlezon Jr, Mark J Thomas. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis [J]. Neuropharmacology, 2009, 56 (Suppl 1): 122-132.[72] Zan Gui-ying, Wang Qian, Wang Yu-jun, et al. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence [J]. Behav Brain Res, 2015, 291: 334-341.[73] William A Carlezon Jr, Johannes Thome, Valerie G Olson, et al. Regulation of cocaine reward by CREB [J]. Science, 1998, 282(5397): 2272-2275.[74] Andrea M Pliakas, Richard R Carlson, Rachael L Neve, et al. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens [J]. J Neurosci, 2001, 21(18): 7397-7403.[75] John W Muschamp, Ashlee Van't Veer, Aram Parsegian, et al. Activation of CREB in the nucleus accumbens shell produces anhedonia and resistance to extinction of fear in rats [J]. J Neurosci, 2011, 31(8): 3095-3103.[76] Elena H Chartoff, Maria Papadopoulou, Matt L MacDonald, et al. Desipramine reduces stress-activated dynorphin expression and CREB phosphorylation in NAc tissue [J]. Mol Pharmacol, 2009, 75(3): 704-712.[77] Michael J McCarthy, Anne-Marie Duchemin, Norton H Neff, et al. CREB involvement in the regulation of striatal prodynorphin by nicotine[J]. Psychopharmacology, 2012, 221(1): 143-153.[78] Michael R Bruchas, Charles Chavkin. Kinase cascades and ligand-directed signaling at the kappa opioid receptor [J]. Psychopharmacology (Berl), 2010, 210(2): 137-147.[79] Raman M, Chen W, Cobb M H. Differential regulation and properties of MAPKs [J]. Oncogene, 2007, 26(22): 3100-3112.[80] Karandikar M, Cobb M H. Scaffolding and protein interactions in MAP kinase modules [J]. Cell Calcium, 1999, 26(5): 219-226.[81] Jay P McLaughlin, Xu Mei, Ken Mackie, et al. Phosphorylation of a carboxyl-terminal serine within the kappa-opioid receptor produces desensitization and internalization [J]. J Biol Chem, 2003, 278(36): 34631-34640.[82] Wang Yu-jun, Hang Ai, Lu Yu-chen, et al. κ Opioid receptor activation in different brain regions differentially modulates anxiety-related behaviors in mice [J]. Neuropharmacology, 2016, 110(Pt A): 92-101.[83] Michael R Bruchas, Tara A Macey, Janet D Lowe, et al. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes [J]. J Biol Chem, 2006, 281(26): 18081-18089.[84] Zan G Y, Wang Q, Wang Y J, et al. p38 mitogen-activated protein kinase activation in amygdala mediates κ opioid receptor agonist U50,488H-induced conditioned place aversion [J]. Neuroscience, 2016, 320:122-128.[85] Floor van Heesch, Jolanda Prins, Jan Pieter Konsman, et al. Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study [J]. Brain Behav Immun, 2013, 29: 98-103.[86] Yvonne Couch, Daniel C Anthony, Oleg Dolgov, et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia [J]. Brain Behav Immun, 2013, 29: 136-146.[87] Michael R Bruchas, Abigail G Schindler, Haripriya Shankar, et al. Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction [J]. Neuron, 2011, 71(3): 498-511.[88] Zhu Chong-Bin, Ana M Carneiro, Wolfgang R Dostmann, et al. p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process [J]. J Biol Chem, 2005, 280(16): 15649-15658. |
[1] | XIE bin, HUANG Zhi-yuan, LIN Duo-duo, YANG Fu-long, XIE Yi-bin. Effect of Acupuncture Combined with Medicine on Depressive Symptoms of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 5-8. |
[2] | MO Cui-ying, LUO Guo-ping. Influence of Nimergoline Combined with Trasylin and Psychotherapy for Depression in Patients with Post-stroke Depression [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 7-10. |
[3] | FU Zhi-jiang1,GAO Yun2,ZHANG Wei3,LIU Zong-chao1,4,ZHANG Hua-wen4,LIU Shi-gui1,HUANG Chen-yi1,GAO Yin5,GAO Hai-ming1. Effects and Mechanisms of Depression on Bone Fracture Healing in Rats [J]. Acta Neuropharmacologica, 2018, 8(6): 1-8. |
[4] | FU Zhi-jiang1,LIU Yong1,GAO Yin1,ZHANG Wei2,GAO Yun2,LIU Zong-chao1*. Effects and Mechanisms of Depression on Bone Fracture Healing in Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 5-6. |
[5] | LIANG Jian-hui1,2*, LIANG hui2, CHENG tao1, LIU Xiao-yan1, Simon M.Y.Lee3, TANG Ben-qin3, WANG Xiu-fen3, CHEN Feng4,Andrew J. Lawrence4. Comorbidity of Anxiety and Depression Induced by Liang’s Contextual-Stress Box in Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 44-45. |
[6] | SUN Yi,TAN Bo,SU Rui-bin. Biased Ligand——Novel Paradigm for Opioid Analgesics [J]. Acta Neuropharmacologica, 2018, 8(2): 1-7. |
[7] | LIN Zhi-bin. Pharmacological Progress of Ganoderma on Anti-aging and Anti-Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(1): 9-15. |
[8] | LIANG Hui,CHENG Tao,LIANG Jian-hui. Progress in the Comorbidity of Depression and Anxiety [J]. Acta Neuropharmacologica, 2017, 7(6): 30-35. |
[9] | ZHANG Kuo,YANG Jing-yu,WU Chun-fu. Progress on Pathophysiology and Animal Models of Depression [J]. Acta Neuropharmacologica, 2017, 7(4): 8-16. |
[10] | WAN Ye,GUO Chun-yan,LI Yong-min. Research Progress of Traditional Chinese Medicine in Parkinson’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 36-42. |
[11] | TIAN You,WANG Xue,AI Jing. Research Progress of Basal Forebrain Cholinergic Dysfunction in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 53-64. |
[12] | REN Qian,WANG Zhen-zhen,CHEN Nai-hong. Regulation of Neuroplasticity by MicroRNA in Depression Disorder [J]. Acta Neuropharmacologica, 2017, 7(3): 12-20. |
[13] | ZHANG Li-hang, YIN Ming. Thinking of Influences of Small Molecules on Neural Stem Cell Neurogenesis [J]. Acta Neuropharmacologica, 2017, 7(1): 1-9. |
[14] | LUO Piao,CHU Shi-feng,CHEN Nai-hong. Progress on Adipokines Participating in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(1): 45-52. |
[15] | SUN Zhi-hua, LUO Su-lan. Nicotinic Acetylcholine Receptors and Diseases [J]. ACTA NEUROPHARMACOLOGICA, 2017, 7(1): 53-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||