Acta Neuropharmacologica ›› 2017, Vol. 7 ›› Issue (4): 8-16.DOI: 10.3969/j.issn.2095-1396.2017.04.002
Previous Articles Next Articles
ZHANG Kuo,YANG Jing-yu,WU Chun-fu
Online:
2017-08-26
Published:
2017-12-01
Contact:
吴春福,男,教授,博士生导师;研究方向:神经精神药理学研究;Tel:+86-024-23986339,E-mail:wucf@syphu.edu.cn
About author:
张阔,男,讲师;E-mail:kzhangchn@163.com
Supported by:
国家自然科学基金项目(No.81130071),辽宁省博士科研启动基金(No.201701977),辽宁省博士科研启动基金指导计划项目(No.20170520193)
CLC Number:
ZHANG Kuo,YANG Jing-yu,WU Chun-fu. Progress on Pathophysiology and Animal Models of Depression[J]. Acta Neuropharmacologica, 2017, 7(4): 8-16.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2017.04.002
[1] 何海然, 薛占霞. 抑郁症相关发病机制的研究进展[J]. 神经药理学报, 2016, 6(2):20-25.[2] Ferrari F, Villa R F. The neurobiology of depression: an integrated overview from biological theories to clinical evidence[J]. Molecular Neurobiology, 2016. 54(7):1-19.[3] 董栋, 王蕊. 抑郁症相关受体、细胞因子及信号通路的研究进展[J]. 神经药理学报, 2012, 24(5):24-30.[4] Siegfried Kasper, Emmanuelle Corruble, Anthony Hale, et al. Antidepressant efficacy of agomelatine versus SSRI/SNRI: results from a pooled analysis of head-to-head studies without a placebo control[J]. Int Clin Psychopharmacol, 2013, 28(1):12-19.[5] Danielle M Gerhard, Eric S Wohleb, Ronald S Duman. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity[J]. Drug Discovery Today, 2016, 21(3):454-464.[6] Kushall Kumar, Sorabh Sharma, Puneet Kumar, et al. Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders[J]. Pharmacology Biochemistry & Behavior, 2013, 110(8):174-184.[7] Ian Mahar, Francis Rodriguez Bambico, Naguid Mechawar, et al. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects[J]. Neuroscience & Biobehavioral Reviews, 2014, 38:173-192.[8] Mario F Juruena. Early-life stress and HPA axis trigger recurrent adulthood depression[J]. Epilepsy & Behavior E & B, 2014, 38:148-159.[9] Ronald S Duman. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections[J]. Depression & Anxiety, 2014, 31(4):291-6.[10] Carmine M Pariante, Stafford L Lightman. The HPA axis in major depression: classical theories and new developments[J]. Trends in Neurosciences, 2008, 31(9): 464-468.[11] Thomas Frodl, Veronica O'Keane. How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans[J]. Neurobiology of Disease, 2013, 52(4):24-37.[12] Mario F Juruena, Anthony J Cleare, Andrew S Papadopoulos, et al. Different responses to dexamethasone and prednisolone in the same depressed patients[J]. Psychopharmacology, 2006, 189(2): 225-235.[13] Chloe Farrell, Veronica O'Keane. Epigenetics and the glucocorticoid receptor: A review of the implications in depression[J]. Psychiatry Research, 2016, 242:349-356.[14] Dirk Jan Saaltink, Erno Vreugdenhil. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition?[J]. Cellular & Molecular Life Sciences Cmls, 2014, 71(13):2499-515.[15] Christoph Anacker, Patricia A Zunszain, Livia A Carvalho, et al. The glucocorticoid receptor: pivot of depression and of antidepressant treatment?[J]. Psychoneuroendocrinology, 2011, 36(3):415-25.[16] Sabine Chourbaji, Miriam A Vogt, Peter Gass. Mice that under- or overexpress glucocorticoid receptors as models for depression or posttraumatic stress disorder[J]. Progress in Brain Research, 2008, 167:65–77.[17] Jana Haase, Eric Brown. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression--a central role for the serotonin transporter?[J]. Pharmacol Ther, 2015, 147, 1-11[18] Angelika Eggert, Michael A Grotzer, Naohiko Ikegaki, et al. Expression of neurotrophin receptor TrkA inhibits angiogenesis in neuroblastoma[J]. Medical & Pediatric Oncology, 2015, 35(6):569-572.[19] Quesseveur G, David D J., Gaillard M C., et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities[J]. Translational Psychiatry, 2013, 3(4):e253.[20] Hiroyuki Koike, Kenichi Fukumoto, Michihiko Iijima, et al. Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression[J]. Behavioural Brain Research, 2013, 238(2):48-52.[21] Glenda M MacQueen, Stephanie Campbell, Bruce S McEwen. Course of illness, hippocampal function, and hippocampal volume in major depression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1387-1392.[22] Robert M Sapolsky. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders[J]. Archives of General Psychiatry, 2000, 57(10): 925-935.[23]Bruce S McEwen. Stress and hippocampal plasticity[J]. Annual Review of Neuroscience, 1999, 22: 105-122.[24]Robert Schloesser, Dennisse Jimenez, Sophie Orvoen, et al. Antidepressant-like effects of electroconvulsive seizures require adult neurogenesis in a neuroendocrine model of depression[J]. Brain Stimulation, 2015, 8(5):862-867. [25] Luca Santarelli, Michael Saxe, Cornelius Gross, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants[J]. Science, 2003, 301(5634): 805-809[26]Maes M, Vandoolaeghe E, Ranjan R, et al. Increased serum interleukin-1-receptor-antagonist concentrations in major depression[J]. J Affective Disorders, 1995, 36(1): 29-36[27] Cheryl A Kassed, Miles Herkenham. NF-κB p50-deficient mice show reduced anxiety-like behaviors in tests of exploratory drive and anxiety[J]. Behavioural Brain Research, 2004, 154(2): 577-584.[28] Benrick A, Schéle E, Pinnock S B, et al. Interleukin‐6 gene knockout influences energy balance regulating peptides in the hypothalamic paraventricular and supraoptic nuclei[J]. J Neuroendocrinology, 2009, 21(7): 620-628.[29] Roger D Porsolt, Guy Anton, Nadine Blavet. Behavioural despair in rats: a new model sensitive to antidepressant treatments [J]. Eur J Pharmacol, 1978, 47(4): 379-391.[30] Lucien Steru, Raymond Chermat, Bernard Thierry, et al. The tail suspension test: a new method for screening antidepressants in mice [J]. Psychopharmacology, 1985, 85(3): 367-370.[31]Seligman M E, Beagley G. Learned helplessness in the rat [J]. J. Comp. Physiol. Psychol, 1975, 88(2): 534-541.[32]Katz R J, Roth K A, Carroll B J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression [J]. Neurosci Biobehav Rev, 1981, 5 : 247-251.[33]Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant [J]. Psychopharmacology, 1987, 93(3): 358-364.[34]Su Guang-yue, Yang Jing-yu, Wang Fang, et al. Antidepressant-like effects of Xiaochaihutang in a rat model of chronic unpredictable mild stress[J]. J Ethnopharmacology, 2014, 152(1):217-26.[35]Harlow H F, Dodsworth R O, Harlow M K. Total social isolation in monkeys [J]. Proc Natl Acad Sci U S A, 1965, 54(1): 90-97.[36]Greg Miller. Social neuroscience. Why loneliness is hazardous to your health[J]. Science, 2011, 331(6014), 138-140.[37]Liesl M Heinrich, Eleonora Gullone. The clinical significance of loneliness: a literature review[J]. Clin Psychol Rev, 2006, 26(6): 695-718.[38]Ma Jie, Wu Chun-fu, Wang Fang, et al. Neurological mechanism of Xiaochaihutang's antidepressant‐like effects to socially isolated adult rats[J]. J Pharmacy & Pharmacology, 2016, 68(10):1340-1349.[39] Yong-ku Kim, Kyoung-Sae Na, Aye-Mu Myint, et al. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression[J]. Progress in Neuropsychopharmacology & Biological Psychiatry, 2016, 64:277-284.[40] Pariante, C.M., Lightman, S.L. The HPA axis in major depression: classical theories and new developments [J]. Trends in neurosciences, 2008, 31 : 464-468.与10重复[41] Charles B Nemeroff, William Gomes Vale. The neurobiology of depression: inroads to treatment and new drug discovery [J]. J Clinical Psychiatry, 2005, 66: 7, 5-13.[42] Zhao Yun-an, Ma Ru, Shen Jia, et al. A mouse model of depression induced by repeated corticosterone injections[J]. J European Pharmacology, 2008, 581(1-2):113.[43] Yi Li-tao, Li Jing, Li Huo-chen, et al. Ethanol extracts from Hemerocallis citrina attenuate the decreases of brain-derived neurotrophic factor, TrkB levels in rat induced by corticosterone administration [J]. J. Ethnopharmacol, 2012, 144 : 328-334.[44] Zhang Kuo, Pan Xing, Wang Fang, et al. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression[J]. Scientific Reports, 2016, 6:30951.[45] Zhang Kuo, Yang Jing-yu, Wang Fang, et al. Antidepressant-like effects of Xiaochaihutang in a neuroendocrine mouse model of anxiety/depression[J]. J Ethnopharmacology, 2016, 194:674-683.[46] Walter Tornatzky, Klaus A Miczek. Long-term impairment of autonomic circadian rhythms after brief intermittent social stress[J]. Physiology & Behavior, 1993, 53(5):983-993.[47] Zhang Kuo, Wang Fang, Yang Jing-yu, et al. Analysis of main constituents and mechanisms underlying antidepressant-like effects of Xiaochaihutang in mice[J]. J Ethnopharmacology, 2015, 175:48-57.[48] Su Guang-yue, Yang Jing-yu, Wang Fang, et al. Xiaochaihutang prevents depressive-like behaviour in rodents by enhancing the serotonergic system[J]. J Pharmacy & Pharmacology, 2014, 66(6):823-34.[49] Catherine Belzung, Paul Willner, Pierre Philippot. Depression: from psychopathology to pathophysiology[J]. Current Opinion in Neurobiology, 2015, 30:24-30.[50] Bartlomiej Pochwat, Magdalena Sowa-Kucma, Katarzyna Kotarska, et al. Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway[J]. Psychopharmacology, 2015, 232(2):355-367.[51] Nico Liebenberg, Samia R L Joca, Gregers Wegener. Nitric oxide involvement in the antidepressant-like effect of ketamine in the Flinders sensitive line rat model of depression[J]. Acta Neuropsychiatrica, 2015, 27(2):90-96.[52] Laurent Naudon, Malika EI Yacoubi, Jean-Marie Vaugeois, et al. A chronic treatment with fluoxetine decreases 5-HT?A receptors labeling in mice selected as a genetic model of helplessness[J]. Brain Research, 2002, 936(1):68-75.[53] Yousef Tizabi, Babur H Bhatti, Kebreten Manaye, et al. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar–Kyoto rats[J]. Neuroscience, 2012, 213(213):72-80.[54] Dipesh Chaudhury, Jessica J Walsh, Allyson K Friedman, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons[J]. Nature, 2013, 493(7433):532-6.[55] Kay M Tye, Julie J Mirzabekov, Melissa R Warden, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour[J]. Nature, 2013, 493(7433):537. |
[1] | ZHANG Dan-shen,ZHANG Jian-mei. Methods and Evaluation of Animal Models of Induced Pulmonary Tuberculosis [J]. Acta Neuropharmacologica, 2019, 9(6): 11-14. |
[2] | ZHANG Dan-shen1,MA Jia-cheng2. Methods and Evaluation of Animal Models of Induced Pulmonary Fibrosis [J]. Acta Neuropharmacologica, 2019, 9(6): 15-20. |
[3] | ZHANG Dan-shen,JIN Shan. Methods and Evaluation of Animal Models of Induced Silicosis [J]. Acta Neuropharmacologica, 2019, 9(6): 21-25. |
[4] | ZHANG Dan-shen,ZHANG Jian-mei. Methods and Evaluation of Animal Models of Induced Pneumonia [J]. Acta Neuropharmacologica, 2019, 9(5): 17-23. |
[5] | ZHANG Dan-shen,LI Jia-ying. Methods and Evaluation of Animal Models of Induced Pulmonary Hypertension [J]. Acta Neuropharmacologica, 2019, 9(5): 24-29. |
[6] | ZHANG Dan-shen,LI Lan. Methods and Evaluation of Animal Models of Induced Emphysema [J]. Acta Neuropharmacologica, 2019, 9(5): 30-33. |
[7] | ZHANG Dan-shen,WANG Fei-fan. Methods and Evaluation of Animal Models of Induced Pulmonary Edema [J]. Acta Neuropharmacologica, 2019, 9(5): 34-39. |
[8] | ZHANG Dan-shen,ZHANG Nan. Methods and Evaluation of Animal Models of Induced Bronchial Asthma [J]. Acta Neuropharmacologica, 2019, 9(4): 1-8. |
[9] | SUN Cheng-cheng,LIU Jian-gang,LIU Mei-xia,LI Hao,LUO Zeng-gang. Exploration of Pathological Mechanism of Vascular Dementia Induced by Chronic Cerebral Hypoperfusion and Production of Several Common Animal Models [J]. Acta Neuropharmacologica, 2019, 9(1): 13-17. |
[10] | LI Wei,ZHANG Dan-shen. Methods and Evaluation of Animal Models of Induced Chronic Bronchitis [J]. Acta Neuropharmacologica, 2019, 9(1): 18-22. |
[11] | FU Zhi-jiang1,GAO Yun2,ZHANG Wei3,LIU Zong-chao1,4,ZHANG Hua-wen4,LIU Shi-gui1,HUANG Chen-yi1,GAO Yin5,GAO Hai-ming1. Effects and Mechanisms of Depression on Bone Fracture Healing in Rats [J]. Acta Neuropharmacologica, 2018, 8(6): 1-8. |
[12] | FU Zhi-jiang1,LIU Yong1,GAO Yin1,ZHANG Wei2,GAO Yun2,LIU Zong-chao1*. Effects and Mechanisms of Depression on Bone Fracture Healing in Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 5-6. |
[13] | LIANG Jian-hui1,2*, LIANG hui2, CHENG tao1, LIU Xiao-yan1, Simon M.Y.Lee3, TANG Ben-qin3, WANG Xiu-fen3, CHEN Feng4,Andrew J. Lawrence4. Comorbidity of Anxiety and Depression Induced by Liang’s Contextual-Stress Box in Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 44-45. |
[14] | ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen. Research Progress of the Role and Underlying Mechanism of Dynorphin/κ Opioid Receptor in the Development of Depression [J]. Acta Neuropharmacologica, 2018, 8(1): 54-64. |
[15] | ZHANG Dan-shen,ZHANG Rui-juan. Methods and Evaluation of Animal Models of Induced Acute Respiratory Distress Syndrome [J]. Acta Neuropharmacologica, 2017, 7(6): 7-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||