Acta Neuropharmacologica ›› 2017, Vol. 7 ›› Issue (3): 12-20.DOI: 10.3969/j.issn.2095-1396.2017.03.003
Previous Articles Next Articles
REN Qian 1,WANG Zhen-zhen 1,CHEN Nai-hong 1,2
Online:
2017-06-26
Published:
2017-12-01
Contact:
陈乃宏,男,博士,研究员;研究方向:神经药理及神经分子生物学;Tel:+86-10-63165177,Fax:86-10-63165211,E-mail:chennh@imm.ac.cn
About author:
任倩,女,硕士,研究生;研究方向:神经药理及神经分子生物学;Tel:+86-10-63165211,E-mail:renqian@imm.ac.cn
Supported by:
国家自然科学基金项目(No.81573636,U1402221,81560663),北京协和医学院“协和青年基金”( No.3332016058),中央级公益性科研院所基本科研业务费专项资金(No.2014RC03,2016RC350002),湖南省重点研发计划项目(No.2015SK2029-1),湖南省教育厅高校科研经费开放基金项目(No.15K091),新药作用机制研究与药效评价北京市重点实验室资助项目(No.BZ0150)
CLC Number:
REN Qian,WANG Zhen-zhen,CHEN Nai-hong. Regulation of Neuroplasticity by MicroRNA in Depression Disorder[J]. Acta Neuropharmacologica, 2017, 7(3): 12-20.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2017.03.003
[1] Natascha Bushati, Stephen M Cohen. microRNA functions[J]. Annu Rev Cell Dev Biol, 2007, 23: 175-205.[2] Kwak PB, Iwasaki S, Tomari Y. The microRNA pathway and cancer[J]. Cancer Sci, 2010, 101(11): 2309-2315.[3] Abrar Qurashi, Jin Peng. Small RNA-mediated gene regulation in neurodevelopmental disorders[J]. Curr Psychiatry Rep, 2010, 12(2): 154-161.[4] Jeffrey S Ross, J Andrew Carlson, Graham Brock. miRNA: the new gene silencer[J]. Am J Clin Pathol, 2007, 128(5): 830-836.[5] Nuray Varol, Ece Konac, Serhat Gurocak, et al. The realm of microRNAs in cancers[J]. Mol Biol Rep, 2011, 38(2): 1079-1089.[6] Kenneth S Kosik. The neuronal microRNA system[J]. Nat Rev Neurosci, 2006, 7(12): 911-920.[7] Li Long-cheng, Steven T Okino, Zhao Hong, et al. Small dsRNAs induce transcriptional activation in human cells[J]. Proc Natl Acad Sci USA, 2006, 103(46): 17337-17342.[8] Heh-In Im, Paul J Kenny. MicroRNAs in neuronal function and dysfunction[J]. Trends Neurosci, 2012, 35(5): 325-334.[9] Michalak P. RNA world-the dark matter of evolutionary genomics[J]. J Evol Biol, 2006, 19(6): 1768-1774.[10] Robert F Place, Li Long-cheng, Deepa Pookot, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences[J]. Proc Natl Acad Sci USA, 2008, 105(5): 1608-1613.[11] John Tsang, Zhu Jun, Alexander van Oudenaarden. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals[J]. Mol Cell, 2007, 26(5): 753-767.[12] Oved K, Morag A, Pasmanik-Chor M, et al. Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants[J]. Transl Psychiatry, 2013, 3: e313.[13] Shobha Vasudevan, Tong Ying-chun, Joan A Steitz. Switching from repression to activation: microRNAs can up-regulate translation[J]. Science, 2007, 318(5858):1931-1934.[14] Zhou Yi-ming, John Ferguson, Joseph T Chang, et al. Inter- and intra-combinatorial regulation by transcription factors and microRNAs[J]. BMC Genomics, 2007, 8: 396.[15] Caroline Dias, Feng Jian, Sun Hao-sheng, et al. beta-catenin mediates stress resilience through Dicer1/microRNA regulation[J]. Nature, 2014, 516(7529): 51-55.[16] Vivien Wang, Wu Wei. MicroRNA-based therapeutics for cancer[J]. Bio Drugs, 2009, 23(1): 15-23.[17] Carlo M Croce. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet, 2009, 10(10): 704-714.[18] Sai Yendamuri, George A Calin. The role of microRNA in human leukemia: a review[J]. Leukemia, 2009, 23(7): 1257-1263.[19] Marika Kapsimali, Wigard P Kloosterman, Ewart de Bruijn, et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system[J]. Genome Biol, 2007, 8(8): R173.[20] Lena Smirnova, Anja Grafe, Andrea Seiler, et al. Regulation of miRNA expression during neural cell specification[J]. Eur J Neurosci, 2005, 21(6): 1469-1477.[21] Lorenzo F Sempere, Sarah Freemantle, Ian Pitha-Rowe, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation[J]. Genome Biol, 2004, 5(3): R13.[22] Erno Vreugdenhil, Eugene Berezikov. Fine-tuning the brain: MicroRNAs[J]. Front Neuroendocrinol, 2010, 31(2):128-133.[23] Roberto Fiore, Gabriele Siegel, Gerhard Schratt. MicroRNA function in neuronal development, plasticity and disease[J]. Biochim Biophys Acta, 2008, 1779(8): 471-478.[24] Victor Ambros. The functions of animal microRNAs[J]. Nature, 2004, 431(7006): 350-355.[25] Pablo Landgraf, Mirabela Rusu, Robert Sheridan, et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J]. Cell, 2007, 129(7): 1401-1414.[26] Chiaki Itami, Fumitaka Kimura. Concurrently-induced plasticity due to convergence of distinct forms of spike timing-dependent plasticity in the developing barrel cortex[J]. Eur J Neurosci, 2016, DOI: 10.1111/ejn.13431.[27] Mary P Heyer, Paul J Kenny. MicroRNA-mediated repression combats depression[J]. Neuron, 2014, 83(2): 253-254.[28] Nirit Kara, Galila Agam, Grant W Anderson, et al. Lack of effect of chronic ketamine administration on depression-like behavior or frontal cortex autophagy in female and male ICR mice[J]. Behav Brain Res, 2016, 317:576-580.[29] Bas van Bommel, Marina Mikhaylova. Talking to the neighbours: The molecular and physiological mechanisms of clustered synaptic plasticity[J]. Neurosci Biobehav Rev, 2016, 71: 352-361.[30] Hu Zhong-hua, Yu Dan-ni, Gu Qin-hua, et al. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression[J]. Nat Commun, 2014, 5:3263.[31] Mariana Alonso, Cecile Viollet, Marie-Madeleine Gabellec, et al. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb[J]. J Neurosci, 2006, 26(41):10508-10513.[32] Orly Lazarov, Mark P Mattson, Daniel A Peterson, et al. When neurogenesis encounters aging and disease[J]. Trends Neurosci, 2010, 33(12): 569-579.[33] Orna Issler, Sharon Haramati, Evan D Paul, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity[J]. Neuron, 2014, 83(2): 344-360.[34] Philip S Choi, Lisa Zakhary, Wen-Yee Choi, et al. Members of the miRNA-200 family regulate olfactory neurogenesis[J]. Neuron, 2008, 57(1): 41-55.[35] Juan Pablo Lopez, Raymond Lim, Cristiana Cruceanu, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment[J]. Nat Med, 2014, 20(7): 764-768.[36] Cheng Li-chun, Erika Pastrana, Masoud Tavazoie, et al. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche[J]. Nat Neurosci, 2009, 12(4): 399-408.[37] Ziats M N, Rennert O M. Identification of differentially expressed microRNAs across the developing human brain[J]. Mol Psychiatry, 2014, 19(7): 848-852.[38] Chen Hai-ming, Wang Nu-lang, Margit Burmeister, et al. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment[J]. Int J Neuropsychopharmacol, 2009, 12(7): 975-981.[39] Keith E Szulwach, Li Xue-kun, Richard D Smrt, et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis[J]. J Cell Biol, 2010, 189(1): 127-141.[40] Krassimira A Garbett, Andrea Vereczkei, Sara Kalman, et al. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression[J]. Biol Psychiatry, 2015, 77(3):256-265.[41] Jin Peng, Daniela C Zarnescu, Stephanie Ceman, et al T. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway[J]. Nat Neurosci, 2004, 7(2): 113-117.[42] Michael Geaghan, Murray J Cairns. MicroRNA and posttranscriptional dysregulation in psychiatry[J]. Biol Psychiatry, 2015, 78(4): 231-239.[43] Amy A Caudy, Mike Myers, Gregory J Hannon, et al. Fragile X-related protein and VIG associate with the RNA interference machinery[J]. Genes Dev, 2002, 16(19): 2491-2496.[44] Aliza P Wingo, Lunn M Almli, Jennifer S Stevens, et al. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression[J]. Nat Commun, 2015, 6: 10106.[45] Laura M Fiori, Juan Pablo Lopez, Stephane Richard-Devantoy, et al. Investigation of miR-1202, miR-135a, and miR-16 in Major Depressive Disorder and Antidepressant Response[J]. Int J Neuropsychopharmacol, 2017, DOI: 10.1016/j.pnpbp.2015.02.003 .[46] Giovanni Lugli, John Larson, Maryann E Martone, et al. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner[J]. J Neurochem, 2005, 94(4):896-905.[47] William T Carrick, Brandi Burks, Murray J Cairns, et al. Noncoding RNA regulation of dopamine signaling in diseases of the central nervous system[J]. Front Mol Biosci, 2016, 3: 69.[48] Giovanni Lugli, Vetle I Torvik, john Larson, et al. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain[J]. J Neurochem, 2008, 106(2): 650-661.[49] Lopez Juan Pablo, Fiori Laura M, Cruceanu Cristiana, et al. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes[J]. Nat Commun, 2017, 8:15497.[50] Gerhard M Schratt, Fabian Tuebing, Elizabeth A Nigh, et al. A brain-specific microRNA regulates dendritic spine development[J]. Nature, 2006, 439(7074): 283-289.[51] Bhaskar Roy, Michael Dunbar, Richard C Shelton, et al. Identification of MicroRNA-124-3p as a putative epigenetic signature of major depressive disorder[J]. Neuropsychopharmacology, 2017, 42(4):864-875.[52] Gerhard M Schratt, Elizabeth A Nigh, Wen G Chen, et al. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development[J]. J Neurosci, 2004, 24(33):7366-7377.[53] Gabriele Siegel, Gregor Obernosterer, Roberto Fiore, et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis[J]. Nat Cell Biol, 2009, 11(6):705-716.[54] Rong Han, Liu Tie-bang, Yang Kong-jun, et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania[J]. J Psychiatr Res, 2011, 45(1):92-95.[55] Priyamvada Rajasethupathy, Ferdinando Fiumara, Robert Sheridan, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB[J]. Neuron, 2009, 63(6):803-817.[56] Xu Yong, Li Fei, Zhang Bo, et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia[J]. Schizophr Res, 2010, 119(1-3):219-227.[57] Gary A Wayman, Monika Davare, Hideaki Ando, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP[J]. Proc Natl Acad Sci USA, 2008, 105(26):9093-9098.[58] Soren Impey, Monika Davare, Adam Lesiak, et al. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling[J]. Mol Cell Neurosci, 2010, 43(1):146-156.[59] Mojtaba Khaksarian, Hossein Mostafavi, Masoud Soleimani M, et al. Regulation of connexin 43 and microRNA expression via beta2-adrenoceptor signaling in 1321N1 astrocytoma cells[J]. Mol Med Rep, 2015, 12(2):1941-1950.[60] Arianna Rinaldi, Sara Vincenti, Francesca De Vito, et al. Stress induces region specific alterations in microRNAs expression in mice[J]. Behav Brain Res, 2010, 208(1):265-269.[61] Shusaku Uchida, Kumiko Hara, Ayumi Kobayashi, et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents[J]. J Neurosci, 2010, 30(45):15007-15018.[62] Shusaku Uchida, Akira Nishida, Kumiko Hara, et al. Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor[J]. Eur J Neurosci, 2008, 27(9).2250-2261.[63] Erno Vreugdenhil, Carla S Verissimo, Rob Mariman, et al. MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain[J]. Endocrinology, 2009, 150(5):2220-2228.[64] Zheng Ge, Minli Pan, Jin Wei-min, et al. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-kappaB pathway[J]. Int Immunopharmacol, 2017, 45:6-12.[65] Kawashima H, Numakawa T, Kumamaru E, et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression[J]. Neuroscience, 2010, 165(4):1301-1311.[66] Zhou Min, Wang Mao-hua, Wang Xiao-bin, et al. Abnormal expression of MicroRNAs induced by chronic unpredictable mild stress in rat hippocampal tissues[J]. Mol Neurobiol, 2017, DOI: 10.1007/s12035-016-0365-6.[67] Ngan Vo, Matthew E Klein, Olga Varlamova, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J]. Proc Natl Acad Sci USA, 2005, 102(45):16426-16431.[68] Nikolaos Mellios, Huang Hsien-Sung, Anastasia Grigorenko, et al. A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex[J]. Hum Mol Genet, 2008, 17(19):3030-3042.[69] Ari Meerson, Luisa Cacheaux, Ki Ann Goosens, et al. Changes in brain MicroRNAs contribute to cholinergic stress reactions[J]. J Mol Neurosci, 2010, 40(1-2):47-55.[70] Short A K, Yeshurun S, Powell R, et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety[J]. Transl Psychiatry, 2017, 7(5):e1114.[71] Grazyna Rajkowska. Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits?[J]. Prog Brain Res, 2000, 126: 397-412.[72] Angelica Torres-Berrio, Juan Pablo Lopez, Rosemary C Bagot, et al. DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218[J]. Biol Psychiatry, 2017, 81(4):306-315.[73] Witold Konopka, Anna Kiryk, Martin Novak, et al. MicroRNA loss enhances learning and memory in mice[J]. J Neurosci, 2010, 30(44):14835-14842.[74] de Kloet E R, Fitzsimons C P, Datson N A, et al. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA[J]. Brain Res, 2009, 1293: 129-141.[75] Anne Baudry, Sophie Mouillet-Richard, Benoit Schneider, et al. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants[J]. Science, 2010, 329(5998): 1537-1541.[76] Carmine M Pariante, Andrew H Miller. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment[J]. Biol Psychiatry, 2001, 49(5):391-404.[77] Jonathan D Turner, Simone R Alt, Cao Lei, et al. Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more[J]. Biochem Pharmacol, 2010, 80(12):1860-1868.[78] Wasserman D, Wasserman J, Sokolowski M. Genetics of HPA-axis, depression and suicidality[J]. Eur Psychiatry, 2010, 25(5): 278-280.[79] Gao Jun, Wang Wen-yuan, Mao Ying-wei, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134[J]. Nature, 2010, 466(7310): 1105-1109. |
[1] | NI Shuang,MIAO Ze-yuan,WANG Jia-xin,et al. Differentiation of BMSCs into Neuron-Like Cells Induced by DMSO Combined with Neurotrophic Factor BDNF [J]. Acta Neuropharmacologica, 2019, 9(5): 5-9. |
[2] | FU Zhi-jiang1,GAO Yun2,ZHANG Wei3,LIU Zong-chao1,4,ZHANG Hua-wen4,LIU Shi-gui1,HUANG Chen-yi1,GAO Yin5,GAO Hai-ming1. Effects and Mechanisms of Depression on Bone Fracture Healing in Rats [J]. Acta Neuropharmacologica, 2018, 8(6): 1-8. |
[3] | ZHOU Wen-hua. Cognitive Enhancers as A Treatment for Heroin Relapse [J]. Acta Neuropharmacologica, 2018, 8(5): 66-67. |
[4] | FU Zhi-jiang1,LIU Yong1,GAO Yin1,ZHANG Wei2,GAO Yun2,LIU Zong-chao1*. Effects and Mechanisms of Depression on Bone Fracture Healing in Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 5-6. |
[5] | LIANG Jian-hui1,2*, LIANG hui2, CHENG tao1, LIU Xiao-yan1, Simon M.Y.Lee3, TANG Ben-qin3, WANG Xiu-fen3, CHEN Feng4,Andrew J. Lawrence4. Comorbidity of Anxiety and Depression Induced by Liang’s Contextual-Stress Box in Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 44-45. |
[6] | ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen. Research Progress of the Role and Underlying Mechanism of Dynorphin/κ Opioid Receptor in the Development of Depression [J]. Acta Neuropharmacologica, 2018, 8(1): 54-64. |
[7] | LIANG Hui,CHENG Tao,LIANG Jian-hui. Progress in the Comorbidity of Depression and Anxiety [J]. Acta Neuropharmacologica, 2017, 7(6): 30-35. |
[8] | ZHANG Kuo,YANG Jing-yu,WU Chun-fu. Progress on Pathophysiology and Animal Models of Depression [J]. Acta Neuropharmacologica, 2017, 7(4): 8-16. |
[9] | DU Guan-tao, LIN Jing-ran,LIU Guang-jun, HONG Hao. Research Progress on the Correlation Between Alzheimer’s Disease and Depression [J]. Acta Neuropharmacologica, 2016, 6(6): 40-44. |
[10] | CAO Li-hua,BAI Ming,FANG Xiao-yan,WANG Can,MIAO Ming-san. Analysis of Animal Models of Depression Based on Clinical Symptoms [J]. Acta Neuropharmacologica, 2016, 6(4): 19-23. |
[11] | ZHANG Xiao-ling,WANG Zhen-zhen,WEN Lu,SHAO Qian-hang,CHEN Nai-hong. The Relationship between Cytokines and Depression [J]. Acta Neuropharmacologica, 2016, 6(4): 31-36. |
[12] | WANG Sha-sha,ZHANG Zhao,ZHANG Mei-jin,HU Jin-feng,CHEN Nai-hong. Advances of Nrf 2/ARE Signaling Pathway in the Major Depression Disorder [J]. Acta Neuropharmacologica, 2016, 6(3): 32-37. |
[13] | HE Hai-ran,XUE Zhan-xia. Research Progress in the Pathogenesis of Depression [J]. Acta Neuropharmacologica, 2016, 6(2): 20-25. |
[14] | JIANG Xiang-yun,SHANG Chao,LI Lei,SUN Shu-zheng,LI Yun-feng,WANG Heng-lin. Allopregnanolone as a New Therapeutic Target for Depression and Anxiety [J]. Acta Neuropharmacologica, 2016, 6(2): 26-30. |
[15] | LI Mu-han, YU Bing-ying, LIU Ping. Extracellular Signal Regulated Kinase (ERK) Signaling Pathway and Depression [J]. Acta Neuropharmacologica, 2015, 5(1): 38-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||