ACTA NEUROPHARMACOLOGICA ›› 2011, Vol. 1 ›› Issue (6): 37-47.
Previous Articles Next Articles
XUE Xiao-yan1, GUO Xiao-hua2, LI-Min3, LUO Huan-min4
Online:
2011-12-26
Published:
2013-04-25
Contact:
罗焕敏,男,教授;研究方向:神经药理学;Tel/Fax:+86-020-85220263,E-mail:tlhm@jnu.edu.cn
About author:
薛小燕,女,硕士;研究方向:药学;E-mail:xuexiaoyan816@sina.com
Supported by:
国家自然科学基金项目(No.30672450),广东省科技计划项目(No.2010B030700018)
CLC Number:
XUE Xiao-yan, GUO Xiao-hua, LI-Min, LUO Huan-min. Progress in Understanding the Pathogenesis of Alzheimer’s Disease[J]. ACTA NEUROPHARMACOLOGICA, 2011, 1(6): 37-47.
[1] Daniel P Perl . Neuropathology of Alzheimer's disease[J]. Mt Sinai J Med, 2010, 77(1): 32-42.[2] Lockhart C, Klimov DK. Molecular Interactions of Alzheimer's biomarker FDDNP with a beta peptide[J]. Biophysical, 2012, 103(11): 2341-2351.[3] Ding Hao, Joseph A Schauerte, Duncan G Steel, et al. Beta-amyloid (1-40) peptide interactions with supported phospholipid membranes: a single-molecule study[J]. Biophys J, 2012, 103(7): 1500-1509.[4] Ahmadul Kadir , Ove Almkvist , Anton Forsberg , et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease[J]. Neurobiol Aging, 2012, 33(1): 198.e1-14.[5] Ashley S Bangert, David A Balota. Keep up the pace: declines in simple repetitive timing differentiate healthy aging from the earliest stages of Alzheimer's disease[J]. J Int Neuropsychol Soc, 2012, 18(6): 1052-1063.[6] Simom F Eskildsen, Pierrick Coupe, Daniel Garcia-Lorenzo, et al. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning[J]. Neuroimage, 2012, 65: 511-521.[7] Adrienne Dorr, Bhupinder Sahota, Lakshminarayan V Chinta, et al. Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer's disease[J]. Brain, 2012, 135(10): 3039-3050.[8] Vincent T Marchesi. Alzheimer's disease 2012 the great amyloid gamble[J]. Am J Pathol, 2012, 180(5): 1762-1767.[9] Christopher M Acker, Stefanie K Forest, Ray Zinkowski, et al. Sensitive quantitative assays for Tau and phospho-Tau in transgenic mouse models[J]. Neurobiol Aging, 2013, 34(1): 338-350.[10] Dennis J Selkoe. Alzheimer's disease: genes, proteins, and therapy[J]. Physiolo Rev, 2001, 81(2): 741-766.[11] Priscilla Mortera, Suzana Herculano-Houzel. Age-related neuronal loss in the rat brain starts at the end of adolescence[J].Front Neuroanat, 2012, 6: 45.[12] Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment[J]. Ann Neurol, 2001, 49(2): 202-213.[13] Capetillo-Zarate E, Gracia L, Tampellini D, et al. Intraneuronal a beta accumulation, amyloid plaques, and synapse pathology in Alzheimer's disease[J]. Neurodegener Dis, 2012, 10(1-4): 56-59.[14] Marcello E, Epis R, Saraceno C, et al. Synaptic dysfunction in Alzheimer's disease[M]. Synaptic Plasticity:Dynamics,Development and Disease, 2012: 573-601.[15] Jaime Grutzendler, Kathryn Helmin, Julia Tsai, et al. Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer's disease[J]. Ann N Y Acad Sci, 2007, 1097: 30-39.[16] Selkoe DJ. Alzheimer's disease is a synaptic failure[J]. Science, 2002, 298(5594): 789-791.[17] Eikelenboom P, Veerhuis R, Familian A, et al. Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications[J]. Neurodegener Dis, 2008, 5(3-4): 190-193.[18] Robert Veerhuis, Marielle J Van Breemen, Jeroen J Hoozemans, et al. Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro[J]. Acta Neuropathol, 2003, 105(2): 135-144.[19] Nady Braidy, Pablo Munoz, Adrian G Palacios, et al. Recent rodent models for Alzheimer's disease: clinical implications and basic research[J]. J Neural Transm, 2012, 119(2): 173-195.[20] Charles Duyckaerts, Benoit Delatour, Marie Claude Potier. Classification and basic pathology of Alzheimer disease[J]. Acta Neuropathol, 2009, 118(1): 5-36.[21] Jose Julio Rodriguez , Harun N Noristani , Alexei Verkhratsky . The serotonergic system in ageing and Alzheimer's disease[J]. Prog Neurobiol, 2012, 99(1): 15-41.[22] Jin Kunlin, Alyson L Peel, Xiao Ou Mao, et al. Increased hippocampal neurogenesis in Alzheimer's disease[J]. Proc Natl Acad Sci USA, 2004, 101(1): 343-347.[23] Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease[J]. Lancer Neurol, 2013, 12(1): 92-104.[24] Driscoll I, Troncoso J. Asymptomatic Alzheimer's disease: a prodrome or a state of resilience?[J]. Curr Alzheimer Res, 2011, 8(4): 330-335.[25] 罗焕敏,宿宝贵,张冀民. 突变型早老素与Alzheimer病[J]. 中华老年医学杂志, 2000, 19(05): 391-393.[26] Kukull WA, Bowen JD. Dementia epidemiology[J]. Med Clin North Am, 2002, 86(3): 573-590.[27] Yang Gou-bing, Li Ze-rong, Rao Han-bing, et al. Classification models for acetylcholinesterase inhibitors based on machine learning methods[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3351-3359.[28] 肖飞,罗焕敏. 靶向β和γ分泌酶治疗阿尔茨海默病的研究进展[J]. 国外医学(药学分册), 2002, 29(05): 272-278.[29] John E Morley, Susan A Farr. Hormesis and Amyloid-beta protein: physiology or pathology?[J]. J Alzheimers Dis, 2012, 29(3): 487-492.[30] Whitson JS, Glabe CG, Shintani E, et al. Beta-amyloid protein promotes neuritic branching in hippocampal cultures[J]. Neurosci Lett, 1990, 110(3): 319-324.[31] Etcheberrigaray R, Ito E, Kim CS, et al. Soluble beta-amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels[J]. Science, 1994, 264(5156): 276-279.[32] FKamenetz, TTomita, HHsieh, et al. APP processing and synaptic function[J]. Neuron, 2003, 37(6): 925-937.[33] Pike CJ, Walencewicz AJ, Glabe CG, et al. Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures[J]. Eur J Pharmacol, 1991, 207(4): 367-368.[34] Pike CJ, Walencewicz AJ, Glabe CG, et al. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity[J]. Brain Res, 1991, 563(1-2): 311-314.[35] Olson RE, Copeland RA, Seiffert D. Progress towards testing the amyloid hypothesis: inhibitors of APP processing[J]. Curr Opin Drug Discov Devel, 2001, 4(4): 390-401.[36] John A Hardy, Gerald A Higgins. Alzheimer's disease: the amyloid cascade hypothesis[J]. Science, 1992, 256(5054): 184-185.[37] Eliezer Masliah, Abbyann Sisk, Margaret Mallory, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease[J]. J Neurosci, 1996, 16(18): 5795-5811.[38] Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment[J]. Ann Neurol, 1991, 30(4): 572-580.[39] Lennart Mucke, Eliezer Masliah, Gui-Qiu Yu, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation[J]. J Neurosci, 2000, 20(11): 4050-4058.[40] Barten DM, Guss VL, Corsa JA, et al. Dynamics of {beta}-amyloid reductions in brain, cerebrospinal fluid, and plasma of {beta}-amyloid precursor protein transgenic mice treated with a {gamma}-secretase inhibitor[J]. J Pharmacol Exp Ther, 2005, 312(2): 635-643.[41] Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins[J]. Proc Natl Acad Sci USA, 1998, 95(11): 6448-6453.[42] Dominic M Walsh, Dean M Hartley, Yoko Kusumoto, et al. Amyloid beta-protein fibrillogenesis. structure and biological activity of protofibrillar intermediates[J]. J Biol Chem, 1999, 274(36): 25945-25952.[43] Gong Yuesong, Chang Lei, Kirsten L Viola, et al. Alzheimer's disease-affected brain: presence of oligomeric a beta ligands (ADDLs) suggests a molecular basis for reversible memory loss[J]. Proc Natl Acad Sci USA, 2003, 100(18): 10417-10422.[44] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.[45] Pascale N Lacor, Maria C Buniel, Lei Chang, et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers[J]. J Neurosci, 2004, 24(45): 10191-10200.[46] Jonathan J Sabbagh, Jefferson W Kinney, Jeffrey L Cummings. Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications [J]. Neurobiol Aging, 2013, 34(1): 169-183.[47] James P Cleary, Dominic M Walsh, Jacki J Hofmeister, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function[J]. Nat Neurosci, 2005, 8(1): 79-84.[48] Townsend Matthew, Shankar Ganesh M, Mehta Tapan, et al. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers[J]. J Physiol, 2006, 572(Pt 2): 477-492.[49] Ganesh M Shankar , Shaomin Li , Tapan H Mehta , et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J]. Nat Med, 2008, 14(8): 837-842.[50] Dennis J Selkoe. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior[J]. Behav Brain Res, 2008, 192(1): 106-113.[51] Nimmrich V, Grimm C, Draguhn A, et al. Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents[J]. J Neurosci, 2008, 28(4): 788-797.[52] Resende R, Ferreiro E, Pereira C, et al. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death[J]. Neuroscience, 2008, 155(3): 725-737.[53] Johnson Gail VW, Stoothoff William H. Tau phosphorylation in neuronal cell function and dysfunction[J]. J Cell Sci, 2004, 117(Pt 24): 5721-5729.[54] Rosenberg KJ, Ross JL, Feinstein HE, et al. Complementary dimerization of microtubule-associated Tau protein: Implications for microtubule bundling and Tau-mediated pathogenesis[J]. Proc Natl Acad Sci USA, 2008, 105(21): 7445-7450.[55] Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease[J]. Indian J Psychiatry, 2009, 51(1): 55-61.[56] Goedert Michel, Jakes Ross. Mutations causing neurodegenerative tauopathies[J]. Biochim Biophys Acta, 2005, 1739(2-3): 240-250.[57] Babu Jeganathan Ramesh, Geetha Thangiah, Wooten Marie W. Sequestosome 1/p62 shuttles polyubiquitinated Tau for proteasomal degradation[J]. J Neurochem, 2005, 94(1): 192-203.[58] Maile R Brown, Vimala Bondada, Jeffery N Keller, et al. Proteasome or calpain inhibition does not alter cellular Tau levels in neuroblastoma cells or primary neurons[J]. J Alzheimers Dis, 2005, 7(1): 15-24.[59] Zipp Frauke, Aktas Orhan. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases[J]. Trends Neurosci, 2006, 29(9): 518-527.[60] Eikelenboom P, Veerhuis R, Scheper W, et al. The significance of neuroinflammation in understanding Alzheimer's disease[J]. J Neural Transm, 2006, 113(11): 1685-1695.[61] Salminen A, Ojala J, Kauppinen A, et al. Inflammation in Alzheimer's disease: Amyloid-[beta] oligomers trigger innate immunity defence via pattern recognition receptors[J]. Prog Neurobiol, 2009, 87(3): 181-194.[62] Gorlovoy P, Larionov S, Pham TT, et al. Accumulation of Tau induced in neurites by microglial proinflammatory mediators[J]. FASEB J, 2009, 23(8): 2502-2513.[63] Bonda David J, Wang Xing Long, Perry Geogre, et al. Oxidative stress in Alzheimer disease: A possibility for prevention[J]. Neuropharmacology, 2010, 59(4-5): 290-294.[64] Stefani Massimo. Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits[J]. Prog Neurobiol, 2012, 99(3): 226-245.[65] Yamamoto Akira, Shin Ryong-Woon, Hasegawa Kazuhiro, et al. Iron (III) induces aggregation of hyperphosphorylated Tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease[J]. J Neurochem, 2002, 82(5): 1137-1147.[66] Exley Christopher. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of Abeta_{42} in senile plaque cores in Alzheimer's disease[J]. J Alzheimers Dis, 2006, 10(2-3): 173-177.[67] Adeela Kamal, Angels Almenar-Queralt, James F LeBlanc, et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP[J]. Nature, 2001, 414(6864): 643-648.[68] Gorazd B Stokin, Concepcion Lillo, Tomas L Falzone, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease[J]. Science, 2005, 307(5713): 1282-1288.[69] 肖飞,罗焕敏. 淀粉样前体蛋白结构和功能的研究进展[J]. 中国老年学杂志, 2009, 29(23): 3144-3147.[70] O'Brien JT, Erkinjuntti T, Reisberg B, et al. Vascular cognitive impairment[J]. Lancet Neurol, 2003, 2(2): 89-98.[71] Deane Rashid, Berislav V Zlokovic. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease[J]. Curr Alzheimer Res, 2007, 4(2): 191-197. |
[1] | XIE bin, HUANG Zhi-yuan, LIN Duo-duo, YANG Fu-long, XIE Yi-bin. Effect of Acupuncture Combined with Medicine on Depressive Symptoms of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 5-8. |
[2] | SUN Li-cong, ZHANG Dan-shen. Research Progress on Potential Treatment of Alzheimer’s Disease with Alkaloids [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 33-37. |
[3] | WANG Si-yi, LI Xian-xiang, LIU Yi-zhou, DU Shuang, GE Chao, LIU Si-si. Current Situation and Prospect of Alzeimer’s Disease Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 38-42. |
[4] | ZHAO Yu-wei, ZHEN Yan-jie, DAI Yue-ying, SHEN Li-xia. Study on the Neuroprotective Mechanism of Quercetin in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 55-64. |
[5] | HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64. |
[6] | ZHANG Hao-ting, SONG Gui-qin, CUI Ruo-tong, HAO Min, WANG Wen-dong. Mining Target Genes of Alzheimer’s Disease Associated with Biological Clock by Bioinformatics Analysis [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 1-7. |
[7] | YANG Xu-hua, DU Shuang, SHEN Li-xia, HAO Jun-rong. Research Progress in Drug Treatment of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 47-53. |
[8] | ZHANG Li-huan, CHU Bao, ZHANG Xiao-yan, SUN Ying-ru, GONG Chun-dong, WANG He-bo. Research Progress of Magnesium in Pathogenesis and Treatment of Migraine [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 29-33. |
[9] | ZHEN Yan-jie, GUO Tong-lin, ZHAO Yu-wei, SHEN Li-xia. Study Progress on Phytoestrogen-Mediated Mitochondrial Pathway’s Neuroprotective Effects in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 40-46. |
[10] | HE Pan, LIU Yue-tao, DU Guan-hua, QIN Xue-mei. Research Advances in Sarcopenia [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 47-53. |
[11] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[12] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[13] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[14] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[15] | YU Li-li1,2,XU Li1,WANG Yi-nuo1,XUE Lu-ning1,Gou Ji-wei1,LI Hong-bo1,HOU Xue-qin1*,ZHANG Han-ting1*. Effects of Osthole on Learning and Memory and the Estrogen Pathway in Ovariectomized Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 7-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||