Acta Neuropharmacologica ›› 2011, Vol. 1 ›› Issue (5): 27-33.
Previous Articles Next Articles
TIAN Xiao-fei 1,2, LI Jian-feng 2, PANG Hao 1
Online:
2011-10-26
Published:
2013-03-24
Contact:
庞灏,男,博士,教授, 博士生导师;研究方向:法医物证学;Tel:+86-024-23256666-5417,E-mail:panghao8@gmail.com
About author:
田小菲,女,硕士研究生;研究方向:法医物证学;Tel:+86-024-23256666-5417,E-mail:feiyuejuan0315@163.com
Supported by:
国家自然科学基金(No.30771833)
CLC Number:
TIAN Xiao-fei, LI Jian-feng, PANG Hao. Paraquat-induced Neuronal Apoptosis Associated with Parkinson's Disease[J]. Acta Neuropharmacologica, 2011, 1(5): 27-33.
[1] Matthew James Farrer. Genetics of Parkinson disease: paradigm shifts and future prospects [J]. Nat Rev Genet, 2006,7(4):306-318. [2] Robert E. Burke. Programmed cell death and Parkinson’s disease[J]. Movement Disorders, 1998, 13(Suppl 1):17-23.[3] James Parkinson. An essay on the shaking palsy[J]. J Neuropsychiatry Clin Neurosci, 2002, 14(2):223-236. [4] Christine Klein, Michael G Schlossmacher. The genetics of Parkinson disease: Implications for neurological care[J]. Nat Clin Pract Neurol, 2006, 2(3): 136-146. [5] Caroline M. Tanner, Ruth Ottman, Samuel M. Goldman, et al. Parkinson disease in twins: an etiologic study[J]. JAMA, 1999, 281(4):341-346. [6] Rosa A González-Polo, Andrea Rodríguez-Martín, Jose M Morán, et al. Paraquat-induced apoptotic cell death in cerebellar granule cells[J]. Brain Res, 2004, 1011(2):170-176. [7] Rose A González-Polo, Mireia Niso-Santano, Miguel A Ortíz-Ortíz, et al. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells[J]. Toxicol Sci, 2007, 97(2):448-458. [8] Jonathan A Javitch, Robert J D'Amato, Stephen M Strittmatter, et al. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity[J]. Proc Natl Acad Sci USA, 1985, 82(7):2173-2177. [9] Sai Takafumi, Uchida Kazuyuki, Nakayama Hiroyuki. Acute toxicity of MPTP and MPP(+) in the brain of embryo and newborn mice[J]. Exp Toxicol Pathol, 2011, 65(1-2):113-119.[10] Chade A R, Kasten M, Tanner C M. Nongenetic causes of Parkinson’s disease[J]. J Neural Transm Suppl, 2006, (70):147-151. [11] James S Bus, James E Gibson. Paraquat: model for oxidant-initiated toxicity[J]. Environ Health Perspect, 1984, 55:37-46. [12] Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats[J]. Brain Res, 2003, 976 (2):243–252. [13] Xie Hong-rong, Hu Lin-sen, Li Guo-yi. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease[J]. Chin Med J (Engl), 2010, 123(8):1086-1092. [14] James S Bus, James E Gibson. Paraquat: model for oxidant-initiated toxicity[J]. Environ Health Perspect, 1984 ,55:37-46. [15] Zacharias E Suntres. Role of antioxidants in paraquat toxicity[J]. Toxicology, 2002, 180(1):65-77. [16] Dodge AD. The mode of action of the bipyridylium herbicides, paraquat and diquat[J]. Endeavour, 1971, 30(111):130-135. [17] Cappelletti G, Maggioni MG, Maci R. Apoptosis in human lung epithelial cells: triggering by paraquat and modulation by antioxidants[J]. Cell Biol Int, 1998, 22(9-10):671-678. [18] Li X, Sun AY. Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells[J]. J Neural Transm, 1999, 106(1):1-21. [19] Vincenzo Mollace, Michelangelo Iannone, Carolina Muscoli, et al. The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non peptidyl superoxide dismutase mimetic[J]. Neurosci Lett, 2003, 335(3):163-166. [20] Pol Gime′ nez-Xavier Pol, Roser Francisco, Antonio F Santidria′n, et al. Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model[J]. Neurotoxicology, 2009, 30(4):658-665. [21] Shawna Tazik, Shakevia Johnson, Deyin Lu, et al. Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis[J]. Neurotox Res, 2009, 15(3):284-290. [22] Danuta Jantas , Wladyslaw Lason . Different mechanisms of NMDA-mediated protection against neuronal apoptosis: a stimuli-dependent effect[J]. Neurochem Res, 2009, 34(11):2040-2054. [23] 金恵铭,王建枝.病理生理学[M].第六版. 北京: 人民卫生出版社, 2004: 130-134. [24] James R. Roede , Jason M. Hansen , Young-Mi Go , et al. Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system[J]. Toxicol Sci, 2011, 121(2):368-375.[25] Sanchez-Ramos JR, Hefti F, Weiner WJ. Paraquat and Parkinson's disease[J]. Neurology, 1987, 37(4):728.[26] Naveen Kumar Singhal , Garima Srivastava , Devendra Kumar Patel ,et al. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse[J]. J Pineal Res, 2011, 50(2):97-109. [27] Sadie Costello, Myles Cockburn, Jeff Bronstein, et al. Parkinson’s Disease and Residential Exposure to Maneb and Paraquat From Agricultural Applications in the Central Valley of California[J]. J American Epidemiol, 2009, 169(9):919-926. [28] Katarzyna Kuter, Maria ?mia?owska, Joanna Wierońska, et al. Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats[J]. Brain Res, 2007, 1155:196–207. [29] Horng-huei Liou , Rong-chi Chen , Yuan-feen Tsai , et al. Effects of paraquat on the substantia nigra of the wistar rats: neurochemical, histological, and behavioral studies[J]. Toxicol Appl Pharmacol, 1996, 137(1):34-41. [30] Min Jeong Kang , Suk Ju Gil , Hyun Chul Koh . Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice[J]. Toxicol Lett, 2009, 188(2):148-152. [31] Alison L. McCormack , Jennifer G. Atienza , Louisa C. Johnston , et al. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration[J]. J Neurochem, 2005, 93(4):1030-1037. [32] A.I Brooks , C.A Chadwick , H.A Gelbard , et al. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss[J]. Brain Res, 1999, 823(1-2):1-10. [33] Wonsuk Yang , Linan Chen , Yunmin Ding , et al. Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice[J]. Hum Mol Genet, 2007, 16(23):2900-2910. [34] Pablo R Castello , Derek A Drechsel , Manisha Patel . Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain[J]. J Biol Chem, 2007, 282(19):14186-14193. [35] R.J Dinis-Oliveira , F. Remião , H. Carmo , et al. Paraquat exposure as an etiological factor of Parkinson's disease[J]. Neurotoxicology, 2006, 27(6):1110-1122. [36] Masato Enari , Hideki Sakahira , Hideki Yokoyama , et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J]. Nature, 1998, 391(6662):43-50. [37] Aimee L Edinger , Craig B Thompson . Death by design: apoptosis, necrosis and autophagy[J]. Curr Opin Cell Biol, 2004, 16(6):663-669. [38] 胡野, 凌志强, 单小云, 等. 细胞凋亡的分子生物学[M]. 第一版. 北京: 军事医学科学出版社, 2002:511-515. [39] Senthil Selvaraj , John A. Watt , Brji B Singh . TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+)[J]. Cell Calcium, 2009,46(3):209-218. [40] Green Douglas R, Kroemer Guido. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684):626-629. [41] Gary Fiskum , Anatoly Starkov , Brain M. Polster , et al. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease[J]. Ann N Y Acad Sci, 2003, 991:111-119.[42] Fei Qingyan, Alison L. McCormack, Donato A. Di Monte, et al. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism[J]. J Biol Chem, 2008, 283(6):3357-3364. [43] Miquel Vila , David Ramonet , Celine Perier . Mitochondrial alterations in Parkinson’s disease: new clues[J]. J Neurochem, 2008, 107(2):317-328. [44] Oren A Levy , Cristina Malagelada , LloydA Greene .Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps[J]. Apoptosis, 2009, 14(4):478-500. [45] Mireia Niso-Santano , Jose M. Morán , Lourdes García-Rubio , et al. Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: role of c-Jun N-terminal kinase in paraquat-induced cell death[J]. Toxicol Sci, 2006, 92(2):507-515. [46] Sarah J Harper , Philip LoGrasso . Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38[J]. Cell Signal, 2001, 13(5):299-310. [47] Cha Guang-Ho, Kim Sunhong, Park Jeehye, et al. Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila[J]. Proc Natl Acad Sci USA, 2005, 102(29):10345-10350.[48] Anna C. Maroney , James P. Finn , Thomas J. Connors , et al. Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family[J]. J Biol Chem, 2001, 276(27):25302-25308. [49] Michael S. Saporito, Ellen M Brown, Matthew S. Miller, et al. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4- phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo[J]. J Pharmacol Exp Ther, 1999, 288(2):421–427. [50] Xia Xu-Gang, Harding Thomas, Weller Michael, et al. Gene transfer of the JNK interacting protein- 1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease[J]. Proc Natl Acad Sci USA, 2001, 98(18): 10433–10438. [51] González-Polo Rosa A, Soler German, Alvarez Alberto, et al. Vitamin E blocks early events induced by 1-methyl-4-phenylpyridinium (MPP+) in cerebellar granule cells[J]. J Neurochem, 2003, 84(2):305-315. [52] Jose M Moran , Rosa A. Gonzalez-Polo , Miguel A. Ortiz-Ortiz , et al. Identification of genes associated with paraquat-induced toxicity in SH-SY5Y cells by PCR array focused on apoptotic pathways[J]. J Toxicol Environ Health A, 2008, 71(22):1457-1467. [53] Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? [J]. Lancet Neurol, 2009, 8(4): 382–397. [54] Miquel Vila , Vernice Jackson-Lewis , Slobodanka Vukosavic , et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2001, 98(5):2837-2842. [55] Javier Simón-Sánchez , Claudia Schulte , Jose M. Bras , et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease[J]. Nat Genet, 2009, 41(12):1308-1312. [56] 鞠躬, 吕国蔚, 王百忍, 等. 神经生物学[M]. 第一版. 北京: 人民卫生出版社, 2004:654-659. [57] Simunovic Filip, Yi Ming, Wang Yulei, et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology[J]. Brain, 2009, 132(Pt 7):1795-1809.[58] Gollamudi Seema, Johri Ashu, Calingasan Noel Y, et al. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease[J]. PLoS One, 2012,7(5):e36191. |
[1] | XIE bin, HUANG Zhi-yuan, LIN Duo-duo, YANG Fu-long, XIE Yi-bin. Effect of Acupuncture Combined with Medicine on Depressive Symptoms of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 5-8. |
[2] | SUN Li-cong, ZHANG Dan-shen. Research Progress on Potential Treatment of Alzheimer’s Disease with Alkaloids [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 33-37. |
[3] | WANG Si-yi, LI Xian-xiang, LIU Yi-zhou, DU Shuang, GE Chao, LIU Si-si. Current Situation and Prospect of Alzeimer’s Disease Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 38-42. |
[4] | ZHAO Yu-wei, ZHEN Yan-jie, DAI Yue-ying, SHEN Li-xia. Study on the Neuroprotective Mechanism of Quercetin in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 55-64. |
[5] | HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64. |
[6] | ZHANG Hao-ting, SONG Gui-qin, CUI Ruo-tong, HAO Min, WANG Wen-dong. Mining Target Genes of Alzheimer’s Disease Associated with Biological Clock by Bioinformatics Analysis [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 1-7. |
[7] | YANG Xu-hua, DU Shuang, SHEN Li-xia, HAO Jun-rong. Research Progress in Drug Treatment of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 47-53. |
[8] | ZHEN Yan-jie, GUO Tong-lin, ZHAO Yu-wei, SHEN Li-xia. Study Progress on Phytoestrogen-Mediated Mitochondrial Pathway’s Neuroprotective Effects in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 40-46. |
[9] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[10] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[11] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[12] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[13] | ZHANG Yu-rong,YU Jie,ZHANG Meng-di,SUN Hong-liu. Xenon Exerts Antiepileptic Effects via Increased Autophagy on Kainic Acid-Induced Acute Generalized Seizures in Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 1-3. |
[14] | YU Li-li1,2,XU Li1,WANG Yi-nuo1,XUE Lu-ning1,Gou Ji-wei1,LI Hong-bo1,HOU Xue-qin1*,ZHANG Han-ting1*. Effects of Osthole on Learning and Memory and the Estrogen Pathway in Ovariectomized Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 7-8. |
[15] | LIU Cai-hong,WU Xian,TANG Su-su,HONG Hao*. Involvement of TGR5 in Aβ-Induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 11-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||