HOU Wen-shu,ZHANG Li
Online:
2017-10-26
Published:
2017-12-01
Contact:
张力,男,教授,硕士生导师;研究方向:神经药理学;Tel:+86-0313-4029188,E-mail:hbnulzhang@126.com
About author:
侯文书,女,硕士研究生;研究方向:神经药理学;E-mail:houws0506@163.com
Supported by:
CLC Number:
HOU Wen-shu,ZHANG Li. Research Progress on Therapeutic Target of Effective Ingredients of Traditional Chinese Medicine in Treating Alzheimer’s Disease[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2017.05.010.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2017.05.010
[1] Aaron D Gitler, Paraminder Dhillon, James Shorter. Neurodegenerative disease: models, mechanisms, and a new hope[J]. Dis Mod Mech, 2017, 10(5): 499. [2] Betty Yuen-Kwan Law, Wu An-guo, Wang Min-jun, et al. Chinese medicine: a hope for neurodegenerative diseases?[J]. J Alzheimers Dis, 2017, 60(s1): S151. [3] Sun Zhi-kun, Yang Hong-qi, Chen Sheng-di. Traditional Chinese medicine: a promising candidate for the treatment of Alzheimer’s disease[J]. Transl Neurodegener, 2013, 2(1): 6. [4] Dennis J Selkoe, Dale Schenk. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics[J]. Annu Rev Pharmacol Toxi-col, 2003, 43: 545-584. [5] Colin L Masters, Dennis J Selkoe. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease[J]. Cold Spring Harb Perspect Med, 2012, 2(6): a006262. [6] Flaubert Tchantchou, Pascale Lacor, Cao Zhi-ming, et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons[J]. J Alzheimers Dis, 2009, 18(4): 787-798. [7] Jiao Yanan, Kong Liang, Yao Ying-jia, et al. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer's disease[J]. Neuropharmacology, 2016, 108: 332-344. [8] Li Xiao-hang, Jin Cui, Yang Yu, et al. Traditional Chinese nootropic medicine radix polygalae and its active constituent onjisaponin B reduce β-amyloid production and improve cognitive impairments[J]. PloS One, 2016, 11(3): e0151147. [9] Song Nan, Zhang Ling, Chen Wei, et al. Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APP(swe)/PS1(ΔE9) mouse model[J]. BBA-Mol Basis Dis, 2016, 1862(9): 1786-1800. [10] Clifford R Jack, David S Knopman, William J Jagust, et al. Tracking patho-physiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers[J]. Lancet Neurol, 2013, 12(2): 207-216. [11] David T Stark, Nicolas G Bazan. Neuroprotectin D1 induces neuronal survival and downregulation of amyloidogenic processing in Alzheimer's disease cellular models[J]. Mol Neurobiol, 2011, 43(2): 131-138. [12] Xu Peng-juan, Wang Hui, Li Zhi-gui, et al. Triptolide attenuated injury via inhibiting oxidative stress in Amyloid-beta25-35-treated differentiated PC12 cells[J]. Life Sci, 2016, 145: 19-26. [13] Dhanasekaran M, Holcomb L A, Hitt A R, et al. Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer’s disease animal model[J]. Phytother Res, 2009, 23(1): 14-19. [14] 梅寒芳, 李荷, 朱家勇. 原花青素对PC12细胞氧化应激损伤保护作用的细胞周期调控机制[J]. 第三军医大学学报, 2014, 36(17): 1809-1812. [15] Goran Šimi?, Mirjana Babi? Leko, Selina Wray, et al. Tau Protein hyperphosphorylation and aggregation in Alzheimer's disease and other tauopathies, and possible neuroprotective strategies[J]. Biomolecules, 2016, 6(1): 6. [16] Yang Cui-cui, Kuai Xue-xian, Li Ya-li, et al. Cornel iridoid glycoside attenuates tau hyperphosphorylation by inhibition of PP2A demethylation[J]. Evid Based Complement Alternat Med, 2013, 2013(9): 108486. [17] Zhang Zhao-xu, Zhao Rui-ping, Tang Ying, et al. Fuzhisan, a Chinese herbal medicine, inhibits beta-amyloid-induced neurotoxicity and tau phosphorylation through calpain/cdk5 pathway in cultured cortical neurons[J]. Neurochem Res, 2012, 37(4): 902. [18] Zhu Yu-you, Wang Juan. Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer's disease[J]. Neurol Sci, 2015, 36(7): 1181. [19] Zhang B, Li Q Q, Chu X K, et al. Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila, model of Alzheimer’s disease[J]. Transl Neurodegener, 2016, 5(1): 21. [20] Wang Yu, Feng Yu, Fu Qun-ying, et al. Panax notoginsenoside Rb1 ameliorates Alzheimer’s disease by upregulating brain-derived neurotrophic factor and downregulating tau protein expression[J]. Exp Ther Med, 2013, 6(3): 826-830. [21] Pasquale Picone, Domenico Nuzzo, Luca Caruana, et al. Mitochondrial dysfunction: different routes to Alzheimer's disease therapy[J]. Oxid Med Cell Longev, 2014, 2014(2): 780179. [22] P Hemachandra Reddy. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer's disease[J]. Cns Spectrums, 2009, 14(S7): 8-13. [23] Yang Ling, Ye Chun-yan, Huang Xiao-tian, et al. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A[J]. J Alzheimers Dis, 2012, 31(1): 131. [24] Zhao Chun-hui, Lv Cui, Li Hang, et al. Geniposide protects primary cortical neurons against oligomeric Aβ1-42-induced neurotoxicity through a mitochondrial pathway[J]. PloS One, 2016, 11(4): e0152551. [25] Lee Hyoung-Gon, Zhu Xiong-wei, Hossein Ghanbari, et al. Differential regulation of glutamate receptors in Alzheimer's disease[J]. Neurosignals, 2002, 11(5): 282-292. [26] Seiji Ozawa, Haruyuki Kamiya, Keisuke Tsuzuki. Glutamate receptors in the mammalian central nervous system[J]. Prog Neurobiol, 1998, 54(5): 581-618. [27] Ved H S, Koenig M L, Dave J R, et al. Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate[J]. Neuroreport, 1997, 8(4): 963-968. [28] Lee M K, Sung Kim, Shih-Hsien Sung, et al. Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity[J]. Res Commun Mol Path, 2000, 108(1-2): 75-86. [29] Cynthia A Lemere, Marcel Maier, Ying Peng, et al. Novel Abeta immunogens: is shorter better?[J]. Curr Alzheimer Res, 2007, 4(4): 427-436. [30] Bernd Bohrmann, Karlheniz Baumann, Jorg Benz, et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β[J]. J Alzheimers Dis, 2012, 28(1): 49-69. [31] Shen Yong, Yang Li-bang, Li Re-na. What does complement do in Alzheimer's disease? Old molecules with new insights[J]. Transl Neurodegener, 2013, 2(1):21. [32] Yang L B, Li Re-na, Seppo Meri, et al. Deficiency of Complement Defense Protein CD59 May Contribute to Neurodegeneration in Alzheimer's Disease[J]. J Neurosci, 2000, 20(20): 7505-7509. [33] Behnam Vafadari, Ahmad Salamian, Leszek Kaczmarek. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy[J]. J Nrurochem, 2016, 139(Suppl): 91-114. [34] Charbel Moussa, Michaeline Hebron, Huang Xu, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease[J]. J Neuroinflamm, 2017, 14(1): 1. [35] 王茜, 程雪娇, 李娜, 等. 白藜芦醇对阿尔茨海默病大鼠海马组织中小胶质细胞及白细胞介素-1β表达抑制作用的实验研究[J]. 中国预防医学杂志, 2015, 16(08): 581-585. [36] Adeeb Shehzad, Gauhar Rehman, Young-Sup Lee. Curcumin in inflammatory diseases[J]. BioFactors, 2013, 39(1): 69-77. [37] Ya Bai-liu, Li Chun-yang, Zhang Lan, et al. Cornel iridoid glycosides inhibits inflammation and apoptosis in brain of rats with focal cerebral ischemia[J]. Neurochem Res, 2010, 35(5): 773-781. [38] 张丽, 李春阳, 赵玲, 等. 山茱萸环烯醚萜苷对局灶性脑缺血模型大鼠神经功能和神经损伤的影响[J]. 中国康复理论与实践, 2007, 13(3): 201-202. [39] Antonio Contestabile. The history of the cholinergic hypothesis[J]. Behav Brain Res, 2011, 221(2): 334. [40] Ana Paula Murray, Maria Belen Faraoni, Maria Julia Castro, et al. Natural AChE inhibitors from plants and their contribution to Alzheimer's Disease therapy[J]. Curr Neuropharmacol, 2013, 11(4): 388. [41] 赵大鹏. 远志总皂苷对AD模型大鼠学习记忆及海马nAchRα7亚基的影响[D]. 太原:山西医科大学, 2012. [42] Liang Yan-qi, Tang Xi-can. Comparative studies of huperzine A, donepezil, and rivastigmine on brain acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine levels in freely-moving rats[J]. Acta Pharmacologica Sinica, 2006, 27(9): 1127-1136. [43] Berend Olivierab. Serotonin: A never-ending story[J]. Eur J Pharmacol, 2015, 753: 2-18. [44] Carhart-Harris R L, Nutt D J. Serotonin and brain function: a tale of two receptors[J]. J Psychopharmacol, 2017, 31(9): 269881117725915. [45] Wang Ai-mei, Geng Ruo-jun, Yi Li, et al. Effect of Eclipta on Learning and Memory and Hippocampal Neurotransmitters in the Senile Dementia Model Rats[J]. J Basic Chinese Medicine, 2016, 22(3): 332-335. [46] Yoshitaka Tatebayashi, Moon H Lee, Li Liang, et al. The dentate gyrus neurogenesis: a therapeutic target for Alzheimer's disease[J]. Acta Neuropathologica, 2003, 105(3): 225-232. [47] Takafumi Noshita, Norihito Murayama, Tetsushi Oka, et al. Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo[J]. Eur J Pharmacol, 2012, 695(1-3): 76-82. [48] Li Xiao-li, Ye Cui-fei, Zhang Li, et al. Cornel Iridoid Glycoside Improves Learning-memory Ability and Increases Expression of Neurotrophic Factors in Global Brain Ischemic Gerbils[J]. Chin Arch Tradit Chin Med, 2011, 29(2): 263-266. |
[1] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[2] | WU Xian,HONG Hao. Bile Acids and Their Receptors are Associated with Central Nervous System Diseases [J]. Acta Neuropharmacologica, 2019, 9(1): 23-30. |
[3] | ZHANG Dan-shen,SU Xiao-mei. Role of N-Methyl-D-Aspartate Receptor in Memory Network [J]. Acta Neuropharmacologica, 2019, 9(1): 44-62. |
[4] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[5] | ZHU Chao,DU Ning-ning,ZHOU Yan-meng,WANG Hao,HOU Xue-qin,ZHANG Fang-fang,TAN Rui,GAO. Increased Blood Pressure Variability Impairs Memory in Rats [J]. Acta Neuropharmacologica, 2018, 8(5): 79-80. |
[6] | HU Wei-wei, CHEN Zhong. Dissection of the Role of Cell Type Specific Histamine Receptors in Central Nervous System Disorders [J]. Acta Neuropharmacologica, 2018, 8(5): 88-89. |
[7] | ZHANG Xiang-yang. Neurocognitive Impairment in Schizophrenia: Clinical Correlates and Pathophysiological Mechanisms [J]. Acta Neuropharmacologica, 2018, 8(5): 89-90. |
[8] | XU Guang-yin. Epigenetic Regulations and Chronic Pain Hypersensitivity [J]. Acta Neuropharmacologica, 2018, 8(5): 94-95. |
[9] | HUANG Zhi-li. [J]. Acta Neuropharmacologica, 2018, 8(5): 97-98. |
[10] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms [J]. Acta Neuropharmacologica, 2018, 8(4): 23-25. |
[11] | WANG Xiao-na, ZHANG Xin-yu, SUN Yan-yun, JIN Xin-chun. D1 Receptor-Mediated Endogenous tPA Upregulation Contributes to Acute Blood Brain Barrier Damage [J]. Acta Neuropharmacologica, 2018, 8(4): 58-59. |
[12] | BAI Ru-bing,ZHANG Zhong-quan,CEN Juan. The Expression of P-Glycoprotein in Neurons and the Effect of Oxidative Stress on P-Glycoprotein [J]. Acta Neuropharmacologica, 2018, 8(3): 9-. |
[13] | SUN Yi,TAN Bo,SU Rui-bin. Biased Ligand——Novel Paradigm for Opioid Analgesics [J]. Acta Neuropharmacologica, 2018, 8(2): 1-7. |
[14] | MA Juan,ZHANG Fa-li,QIAN Zhong-ming. Hepcidin and Iron-associated Neurodegenerative Disorders [J]. Acta Neuropharmacologica, 2018, 8(1): 16-22. |
[15] | YANG Yan-fei,HUANG Zhi-li. Recent Advance on Sleep-Wake Regulation Based on Novel Techniques for Specific Manipulations of Neuron Activities [J]. Acta Neuropharmacologica, 2018, 8(1): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||