Acta Neuropharmacologica ›› 2014, Vol. 4 ›› Issue (5): 44-54.
Previous Articles Next Articles
CHEN Jiao, CHU Shi-feng, WANG Zhen-zhen, CHEN Nai-hong
Online:
2014-10-26
Published:
2015-01-20
Contact:
陈乃宏,男,研究员,博士生导师,研究方向:神经系统疾患创新药物开发及作用机制,E-mail:chennh@imm.ac.cn
About author:
陈姣,女,博士研究生,研究方向:神经药理学和神经生物学,E-mail:chenjiao234@163.com
Supported by:
国家自然科学基金资助项目(No. 81274122、No. 81202507、No. 81373998、No. U1402221);国家“重大新药创制”科技重大专项(No. 2012ZX09301002-004);北京市自然科学基金项目(No. 7131013, No. 7142115);教育部博士点基金重点项目(No. 20121106130001);新药作用机制研究与药效评价北京市重点实验室资助项目(No. BZ0150);中央级公益性科研院所基本科研业务费专项资金(No. 2014RC03)
CLC Number:
CHEN Jiao, CHU Shi-feng, WANG Zhen-zhen, CHEN Nai-hong. Research Progress of GSK3 in the Pathophysiology of Depression Disorder[J]. Acta Neuropharmacologica, 2014, 4(5): 44-54.
[1] Li Xiao-hua, Richard S Jope. Is glycogen synthase kinase-3 a central modulator in mood regulation? [J]. Neuropsychopharmacology, 2010, 35(11): 2143-2154.[2] Ana C Andreazza, Marica Kauer-Sant’anna, Benicio N Frey, et al. Oxidative stress markers in bipolar disorder: a meta-analysis[J]. J Affect Disord, 2008, 111(2-3): 135-144.[3] Amanda V Steckert, Samira S Valvassori, Morgana Moretti, et al. Role of oxidative stress in the pathophysiology of bipolar disorder[J]. Neurochem Res, 2010, 35(9): 1295-1301.[4] N Jennifer Klinedinst, William T Regenold. A mitochondrial bioenergetic basis of depression[J]. J Bioenerg Biomembrs, 2015, 47(1-2): 155-71.[5] Xu Ying, Wang Chuang, Jonathan J Klabnik, et al. Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment[J]. Curr Neuropharmacol, 2014, 12(2): 108-119.[6] Sawsan Aboul-Fotouh. Chronic treatment with coenzyme Q10 reverses restraint stress- in duced anhedonia and enhances brain mitochondrial respiratory chain and creatine kinase activities in rats[J]. BehavPharmacol, 2013, 24(7):552-560.[7] Piyajit Watcharasit, Apinya Thiantanawat, Jutamaad Satayavivad. GSK3 promotes arsenite-induced apoptosis via facilitation of mitochondria disruption[J]. J. Appl. Toxicol, 2008, 28(4): 466-474.[8] Katsuhiko Ohori, Tetsuji Miura, Masaya Tanno, et al. Ser9 phosphorylation of mitochondrial GSK-3 is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis[J]. Am J Physiol Heart Circ Physiol, 2008, 295(5): 2079-2086.[9] Lisa Nevell, Zhang Ke-zhong, Allison E Aiello, et al. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study[J]. Psychoneuroendocrinology, 2014, 43: 62-70.[10] Ling Song, Patrizia De Sarno, Richard S Jope. Central role of glycogen synthase kinase-3 in endoplasmic reticulum stress-induced caspase-3 activation[J]. J Biol Chem, 2002, 277(47):44701-44708. [11] Anna J Kim, Yuan-yuan Shi, Richard C Austin, et al. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3[J]. J Cell Sci, 2004, 118(1): 89-99.[12] Robert Dantzer, Jason C OConnor, Gregory G Freund, et al. From inflammation to sickness and depression: when the immune system subjugates the brain[J]. Nat Rev Neurosci, 2008, 9(1): 46-56.[13] Pierre F Renault, Jay H Hoofnagle, Yoon Park, et al. Psychiatric complications of long-term interferon alfa therapy[J]. Arch Intern Med, 1987, 147(9): 1577-1580.[14] Raz Yirmiya, Weidenfeld J, Yehuda Pollak, et al. Cytokines,“depression due to a general medical condition,” and antidepressant drugs[J]. Adv Exp Med Biol, 1999, 461: 283-316.[15] Michael R Irwin, Andrew H Miller. Depressive disorders and immunity: 20 years of progress and discovery[J]. Brain Behav Immun, 2007, 21(4):374-383. [16] Martin M, Rehani K, Jope R S, et al. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3[J]. Nat Immunol, 2005, 6(8): 777-784.[17] Huang Wei-ching, Lin Yee-shin, Wang Chi-yun, et al. Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells[J]. Immunology, 2009, 128(1): e275-e286.[18] Eleonore Beurel, Richard S Jope. Differential regulation of STAT family members by glycogen synthase kinase-3[J]. J Biol Chem, 2008, 283(32): 21934-21944.[19] Eleonore Beurel, Richard S Jope. Glycogen synthase kinase-3 promotes the synergistic action of interferon-gamma on lipopolysaccharide-induced IL-6 production in RAW264.7 cells[J]. Cell Signal, 2009, 21(6): 978-985.[20] Li Faqi, zhao Zhong-chong, Kenneth Maiese. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3β,β-catenin,and nuclear factor-κB[J]. Curr Neurovasc Res, 2006, 3(3): 187-201.[21] Servio H Ramirez, Fan Shong-shan, Zhang Ming, et al. Inhibition of glycogen synthase kinase 3beta(GSK3beta) decreases inflammatory responses in brain endothelial cells[J].Am J Pathol, 2010, 176(2): 881-892.[22] Wang Mei-jen, Huang Hsin-yi, Chen Wu-fu, et al. Glycogen synthase kinase-3beta inactivation inhibits tumor necrosis factor-alpha production in microglia by modulating nuclear factor kappaB and MLK3/JNK signaling cascades[J]. J Neuroinflammation, 2010, 7(99): 1-18.[23] Hu Xiao-yu, Paul K Paik, Janice Chen, et al. IFN- γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins[J]. Immunity, 2006, 24(5): 563-574.[24] Wang Hui-zhi, Jonathan Brown, Carlos A Garcia, et al. The role of glycogen synthase kinase 3 in regulating IFN-beta-mediated IL-10 production[J]. J Immunol, 2011, 186(2): 675-684.[25] Dai Chun-sun, Wen Xiao-yan, He Wei-chun, et al. Inhibition of proinflammatory RANTES expression by TGF-beta1 is mediated by glycogen synthase kinase-3beta-dependent beta-catenin signaling[J]. J Biol Chem, 2011, 286(9): 7052-7059.[26] Luis C Fuentealba, Edward Eivers, Astushi Ikeda, et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal[J]. Cell, 2007, 131(5): 980-993.[27] Cheng-chieh Tsai, Jui-In Kai, Huang Wei-ching, et al. Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2[J]. J Immunol, 2009, 183(2): 856-864.[28] Harrington L E, Hatton R D, Mangan P R, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132.[29] Vaishnav Krishnan, Eric J Nestler. The molecular neurobiology of depression[J]. Nature, 2008, 455(7215): 894-902.[30] Bruce S McEwen. Physiology and neurobiology of stress and adaptation: central role of the brain[J]. Physiol Rev, 2007, 87(3): 873-904.[31] Dost Ongur, Wayne C Drevets, Joseph L Price. Glial reduction in the subgenual prefrontal cortex in mood disorders[J]. Proc Natl Acad Sci USA, 1998, 95(22): 13290-13295.[32] D Chichung Lie, Song Hong-jun, Sophia A Colamarino, et al. Neurogenesis in the adult brain: new strategies for central nervous system diseases[J]. Annu Rev Pharmacol. Toxicol, 2004, 44: 399-421.[33] Malberg J E, Duman R S. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment[J]. Neuropsychopharmacology, 2003, 28(9): 1562-1571.[34] Jessica E Malberg, Amelia J Eisch, Eric J Nestler, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus[J]. J Neurosci, 2000, 20(24): 9104-9110.[35] David D J, Samuels B A, Rainer Q, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression[J]. Neuron, 2009, 62(4): 479-493.[36] Tea-Yeon Eom, Richard S Jope. Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3α/βimpairs in vivo neural precursor cell proliferation[J]. Biol Psychiatry, 2009, 66(5): 494-502.[37] Woo-Yang Kim, Wang Xin-shuo, Wu Yao-hong, et al. GSK-3 is amaster regulator of neural progenitor homeostasis[J]. Nat Neurosci, 2009, 12(11): 1390-1397.[38] Mao Ying-wei, Ge Xue-cai, Christopher L Frank, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling[J]. Cell, 2009, 136(6): 1017-1031.[39] Shuken Boku, Shin Nakagawa, Takahiro Masuda, et al. Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3b and b-Catenin/TCF pathway[J]. Neuropsychopharmacology, 2009, 34(3): 805-815.[40] Wexler E M, Geschwind D H, Palmer T D. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation[J]. Molecular Psychiatry, 2008, 13(3): 285-292.[41] Ryota Hashimoto, Nobuyuki Takei, Kazuhiro Shimazu, et al. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: An essential step for neuroprotection against glutamate excitotoxicity[J]..Neuropharmacology, 2002, 43(7): 1173-1179.[42] De Vivo M, Maayani S. Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes[J]. J Pharmacol Exp Ther, 1986, 238(1): 248-253.[43] Daniel S Cowen, Rebecca S Sowers, David R Manning. Activation of a mitogen-activated protein kinase (ERK2) by the 5-hydroxytryptamine1A receptor is sensitive not only to inhibitors of phosphatidylinositol 3-kinase, but to an inhibitor of phosphatidylcholine hydrolysis[J]. J Biol Chem, 1996, 271(37): 22297-22300.[44] Katarina Varnas, Christer Halldin, Hakan Hall. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain[J]. Hum Brain Mapp, 2004, 22(3): 246-260.[45] Mustapha Riad, Sylvia Garcia, Kenneth Watkins, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain[J]. J Comp Neurol, 2000, 417(2): 181-194.[46] Daniel Hoyer, Jason P Hannon, Graeme R Martin. Molecular, pharmacological and functional diversity of 5- HT receptors[J]. Pharmacol Biochem Behav, 2002, 71(4): 533-554.[47] Klaus B Fink, Manfred Gothert. 5-HT receptor regulation of neurotransmitter release[J]. Pharmacol Rev, 2007, 59(4): 360-417.[48] Kennett G A, Dourish C T, Curzon G. Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression[J]. Eur J Pharmacol, 1987, 134(3): 265-274.[49] Youssef Sari. Serotonin1B receptors: from protein to physiological function and behavior[J]. Neurosci Biobehav Rev, 2004, 28(6): 565-582.[50] Lee A Dawson, Zoe A Hughes, Kathryn R Starr. Characterisation of the selective 5-HT1B receptor antagonist SB-616234-A(1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): in vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity[J]. Neuropharmacology, 2006, 50(8): 975-983.[51] Franck Chenu, Denis David, Isabelle Leroux-Nicollet. Serotonin1B heteroreceptor activation induces anantidepressant-like effect in micewith an alteration of the serotonergic system[J]. J Psychiatry Neurosci, 2008, 33(6): 541 - 550.[52] Per Svenningsson, Paul Greengard. P11 (S100A10)-an inducible adaptor protein that modulates neuronal functions[J]. Curr Opin Pharmacol, 2007, 7(1): 27-32.[53] Conn P J, Elaine Sanders-Bush. Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex[J]. Neuropharmacology, 1984, 23(8): 993-996.[54] Stephanie Watts. Activation of the mitogen-activated protein kinase pathway via the 5-HT2A receptor[J]. Ann N Y Acad Sci, 1998, 861: 162-168.[55] Cullen L Schmid, Kirsten M Raehal, Laura M Bohn. Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo[J]. Proc. Natl. Acad. Sci.U.S.A. 2008, 105(3): 1079-1084.[56] Miner L A, Backstrom J R, Sanders B E. Ultrastructural localization of serotonin2A receptors in the middlelayers of the rat prelimbic prefrontal cortex[J]. Neuroscience, 2003, 116(1): 107-117.[57] Christopher J Schmidt, Gina M Fadayel. The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat[J]. Eur J Pharmacol, 1995, 273(3): 273-279.[58] Gerard J Marek, Linda Carpenter, Christopher J McDougle, et al. Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders[J]. Neuropsychopharmacology, 2003, 28(2): 402-412.[59] Nichols D E. Hallucinogens[J]. Pharmacol Ther, 2004, 101(2): 131-181.[60] Landolt H P, Wehrle R. Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood?[J]. Eur J Neurosci, 2009, 29(9): 1795-1809.[61] Joseph L Price, Wayne C Drevets. Neurocircuitry of mood disorders[J]. Neuropsychopharmacology, 2010, 35(1): 192-216.[62] Paul R Albert, Sylvie Lemonde. 5-HT1A receptors, gene repression,and depression: guilt by association[J]. Neuroscientist, 2004, 10(6): 575-593.[63] Markowitz J S, Brown C S, Moore T R. Atypical antipsychotics. Part I: Pharmacology, pharmacokinetics, and efficacy[J]. Ann Pharmacother, 1999, 33(1): 73-85.[64] Li Xiao-hui, Zhu Wa-wa, Myoung-Sun Roh, et al. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain[J]. Neuropsychopharmacology, 2004, 29(8): 1426-1431.[65] Jean-Martin Beaulieu, Zhang Xiaod-dong, Ramona Rodriguiz. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency[J]. Proc Natl Acad Sci USA, 2008, 105(4): 1333-1338.[66] Abigail M Polter, Yang Su-fen, Richard S Jope, et al. Functional significance of glycogen synthase kinase-3 regulation by serotonin[J]. Cell Signal, 2012, 24(1): 265-71.[67] Hideki Okamoto, Bhavya Voleti, Mounira Banasr, et al. Wnt2 expression and signaling is increased by different classes of antidepressant treatments[J]. Biol Psychiatry, 2010, 68(6): 521-527.[68] Abigail Polter, Yang Su-fen, Anna A Zmijewska, et al. Forkhead box, class o transcription factors in brain: regulation and behavioral manifestation[J]. Biol Psychiatry, 2009, 65(2): 150-159.[69] Claudie Hooper, Vladimir Markevich, Florian Plattner, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation[J]. Eur J Neurosci, 2007, 25(1): 81-86.[70] Sigeng Chen, Geoffrey C Owens, Kathryn L Crossin, et al. Serotonin stimulates mitochondrial transport in hippocampal neurons[J]. Mol Cell Neurosci, 2007, 36(4): 472-483.[71] Daniel S Cowen, Nadine N Johnson-Farley, Tatyana Travkina. 5-HT receptors couple to activation of Akt, but not extracellular-regulated kinase (ERK), in cultured hippocampal neurons[J]. J Neurochem, 2005, 93(4): 910-917.[72] DeWire S M, Ahn S, Lefkowitz R J, et al. Beta-arrestins and cell signaling[J]. Annu Rev Physiol, 2007, 69: 483-510.[73] Robert J Lefkowitz, Sudha K Shenoy. Transduction of receptor signals by beta-arrestins[J]. Science, 2005, 308(5721): 512-517.[74] Laura Bohn, Gainetdinov R R, Lin F T, et al. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence[J]. Nature, 2000, 408(6813): 720-723.[75] Massot O, Rousselle J C, Fillion M P, et al. 5-HT1B receptors: a novel target for lithium. Possible involvement in mood disorders[J]. Neuropsychopharmacology, 1999, 21(4): 530-541.[76] Chen L, Zhou W, Chen P, et al. Glycogen synthase kinase-3beta is a functional modulator of serotonin 1b receptors[J]. Mol Pharmacol, 2011, 79(6): 974-986.[77] Weiner D M, Burstein E S, Nash N, et al. 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics[J]. J Pharmacol Exp Ther, 2001, 299(1): 268-276.[78] Li Xiao-hua, Kelley M Rosborough, Ari B Friedman, et al. Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics[J]. Int J Neuropsychopharmacol, 2007, 10(1): 7-19.[79] Jean-Martin Beaulieu, Tatyana D Sotnikova, Sebastien Marion, et al. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior[J]. Cell, 2005, 122(2): 261-273.[80] Abigail M Polter, Li Xiao-hua. Glycogen synthase kinase-3 is an intermediate modulator of serotonin neurotransmission[J]. Frontiers in Molecular Neuroscience, 2011, 24(4): 1-14.[81] Alex L van Bemmel. The link between sleep and depression: the effects of antidepressants on EEG sleep[J]. J Psychosom Res, 1997, 42(6): 555-564.[82] Rao U. DSM-5: Disruptive mood dysregulation disorder[J].DMDD, 2014, 11: 119-23.[83] Maurice M Ohayon, Thomas Roth. Place of chronic insomnia in the course of depressive and anxiety disorders[J]. J Psychiatr Res, 2003, 37(1): 9-15.[84] Jennifer A Mohawk, Manuel Miranda-Anaya, Ozgur Tataroglu, et al. Lithium and genetic inhibition of GSK3β enhance the effect of methamphetamine on circadian rhythms in the mouse[J]. Behav Pharmacol, 2009, 20(2): 174-183.[85] Caroline H Ko, Joseph S Takahashi. Molecular components of the mammalian circadian clock[J]. Hum Mol Genet, 2006, 15(2): 271-277.[86] Francesco Benedetti, Alessandro Serretti, Cristina Colombo. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression[J]. Am J Med Genet, 2003, 123(1): 23-26.[87] Joseph T Coyle. What can a clock mutation in mice tell us about bipolar disorder?[J]. Proc Natl Acad Sci USA, 2007, 104(15): 6097-6098.[88] Sebastian Martinek, Susan Ionog, Armen Manoukian. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock[J]. Cell, 2001, 105(6): 769 -779.[89] Chisato Iitaka, Kouomi Miyazaki, Toshihiro Akake. A role for glycogen synthase kinase-3beta in the mammalian circadian clock[J]. J Biol Chem, 2005, 280(33): 29397-29402.[90] Philip Cohen, Michel Goedert. GSK3 inhibitors: development and therapeutic potential[J]. Nat Rev Drug Discov, 2004, 3(6): 479-487. |
[1] | HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64. |
[2] | LIN Si-mei, ZHOU Hong, YANG Bao-xue. The Relationship between Hyperuricemia and Chronic Kidney Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 55-64. |
[3] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[4] | LIU Cai-hong,WU Xian,TANG Su-su,HONG Hao*. Involvement of TGR5 in Aβ-Induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 11-12. |
[5] | WU Xian, LV Yang-ge, TANG Su-Su, HONG Hao. Involvement of TGR5 in Aβ-induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 53-54. |
[6] | DU Yun-guang,CAO Xin-xin,WANG Xiao-ru,WANG Shu-hua. Protective Effect of Vitexin on Cerebral Ischemia-Reperfusion Injury in Rats [J]. Acta Neuropharmacologica, 2017, 7(1): 10-23. |
[7] | WANG Ming-lei,WANG Wen-ge,ZHANG Jun-hong. Effects of Different Challenging Time on Airway Inflammation and Airway Remodeling of an Asthmatic Mouse Model [J]. Acta Neuropharmacologica, 2017, 7(1): 29-37. |
[8] | DU Guan-tao,ZHANG Chun-teng,HONG Hao. Progress on Research of 5-Lipoxygenase in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2016, 6(5): 39-44. |
[9] | WANG Sha-sha,ZHANG Zhao,ZHANG Mei-jin,HU Jin-feng,CHEN Nai-hong. Advances of Nrf 2/ARE Signaling Pathway in the Major Depression Disorder [J]. Acta Neuropharmacologica, 2016, 6(3): 32-37. |
[10] | ZHANG Jing, ZOU Yu-an, Dong Xiao-hua. Research Progress on the Protective Eff ect of Cerebral Ischemia Preconditioning on Cerebral Ischemia Injury [J]. Acta Neuropharmacologica, 2015, 5(5): 57-64. |
[11] | WANG Lun-zheng, XIE Wen-juan, TANG Tie-Shan. Neural Stem Cells, Adult Neurogenesis and Cell Therapy for Neurodegenerative Diseases [J]. Acta Neuropharmacologica, 2015, 5(3): 46-64. |
[12] | ZHOU Si-bai, LI Jin-ze, LIU Rui, ZHANG Tian-tai. Recent Development of the Flavonoids on the Treatment of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2015, 5(1): 51-58. |
[13] | Tang Min-ke,Fan Yue,Liu Chang-suo,Zhang Jun-tian. Progress of The Mechanisms of Neuroprotective Effects of Salvianolic Acid B [J]. Acta Neuropharmacologica, 2014, 4(1): 1-10. |
[14] | LIU Ting-ting, WANG Wen. Eph/ephrin Signaling Pathway in Brain Neurogenesis [J]. ACTA NEUROPHARMACOLOGICA, 2014, 4(1): 25-28. |
[15] | WANG Qi, WANG Hong-kai, RAN Jian-hua. The Progress of Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in Nervous System [J]. ACTA NEUROPHARMACOLOGICA, 2014, 4(1): 58-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||