[1] Jian-Zhe LI, Xiu-Neng Tang, Ting-Ting LI, et al. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression[J]. Exp Ther Med, 2016, 11(6): 2407–2412.[2] Nan-mu Yang, Hong Cui, Feng Han, et al. Paeoniflorin inhibits human pancreatic cancer cell apoptosis via suppression of MMP-9 and ERK signaling[J]. Oncol Lett, 2016, 12(2): 1471-1476.[3] Zhang Ying, Wang Li-Li, Wu Yan, et al. Paeoniflorin attenuates hippocampal damage in a rat model of vascular dementia[J]. Exp Ther Med, 2016, 12(6): 3729-3734. [4] 朱叶芳, 党姗姗, 华子瑜. 芍药苷神经保护机制的研究进展[J]. 中国中药杂志, 2010, 35(11): 1490-1493.[5] 胡增峣, 徐岚, 闫蓉, 等.芍药苷作用于神经系统的研究进展[J]. 中国中药杂志, 2013, 38(3): 297-301.[6] 张由美. 芍药苷通过自噬-溶酶体通路保护PC12细胞[D]. 苏州: 苏州大学, 2011, 15-17.[7] Cai Zeng-lin, Zhang Xin-zhi, Zhang Yong-jin. The impact of paeoniflorin on α-synuclein degradation pathway[J]. Evid Based Complement Alternat Med, 2015, 2015: 182495.[8] Cao Bi-yin, Yang Ya-ping, Luo Wei-feng. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway[J]. J Ethnopharmacology, 2010, 131(1): 122-129.[9] Cris S Constantinescu, Nasr Farooqi, Kate O’Brien. Experimental autoimmune encephalomyelitis(EAE) as a model for multiple sclerosis[J]. British J Pharmacology, 2011, 164: 1079-1106.[10] Zhang Han, Qi Yuan-yuan, Yuan Yuan-yang. Paeoniflorin ameliorates experimental autoimmune encephalomyelitis Via inhibition of dendritic cell function and Th17 cell differentiation[J]. Sci Rep, 2017, 7: 41887-41899.[11] 李世举, 王艳旭, 武松鹰. 白芍总苷对EAE大鼠外周免疫器官及中枢神经系统NF-κB p65表达的影响[J]. 山西医科大学学报, 2015, 46(12): 1188-1192.[12] Zhang Hong-ri, Peng Jing-hua, Cheng Xiao-bing. Paeoniflorin attenuates amyloidogenesis and the inflammatory responses in a transgenic mouse model of Alzheimer’s disease[J]. Neurochem Res, 2015, 40(8): 1583-1592.[13] Zhang Li-gong, Wang Li-jun, Shen Qing-qing. Paeoniflorin improves regional cerebral blood flow and suppresses inflammatory factor in the hippocampus of rats with vascular dementia[J]. Chin J Integr Med, 2015, 1-7. 10.1007/s11655-015-2124-3[14] 张海红. NMDA 受体与中枢神经系统退行性疾病[J]. 神经药理学报, 2015, 5(2):17-23.[15] 刘靓靓, 沈丽霞. 雌激素对阿尔茨海默病神经元保护作用研究进展[J]. 神经药理学报, 2013, 3(4): 58-64.[16] 马伟, 马卫东, 苗珍花, 等. 芍药苷神经保护作用的实验研究[J]. 宁夏医科大学学报, 2011, 02: 132-135+96.[17] Qing-Qiu Mao, Xiao-Ming Zhong, Chun-Rong Feng. et al. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca2+ antagonism[J]. Cell Mol Neurobiol, 2010, 30: 1059-1066.[18] Ye Zhi, Guo Qu-lian, Wang Na, et al. Delayed neuroprotection induced bysevoflurane via opening mitochondrial ATP-sensitive potassium channels and p38 MAPK phosphorylation[J]. Neurol Sci, 2012, 33(2): 239-249.[19] 王国峰, 尹鲁平, 赵霞, 等. 胆碱能M受体信号通路在芍药苷抗脑缺血神经保护中的作用[J]. 中国药理学通报, 2012, 28(3): 311-316.[20] 程阳, 刘孝东. 酸敏感离子通道的研究进展[J]. 中国医药指南, 2015, (10): 50-51.[21] Gu Xiao-su, Wang Fen, Zhang Cai-yi. Neuroprotective effect of paeoniflorin on 6-OHDA-lesioned rat model of Parkinson’s disease[J]. Neurochem Res, 2016, 41(11): 2923-2936.[22] 曹碧茵, 孙雪, 杨亚平. 芍药苷下调PC12细胞酸敏感离子通道1a的表达拮抗酸诱导的钙内流[J]. 中国药理学通报, 2010, 26(1): 139-140.[23] 刘婷婷, 张淑萍, 覃筱燕, 等. MAPK信号转导通路与神经损伤研究进展[J]. 中国公共卫生, 2016, 32(2): 248-254.[24] Lu Hong-jian, Ning Xiao-Jin, Tao Xue-lei. MEKK1 associated with neuronal apoptosis following intracerebral hemorrhage[J]. Neurochemical Research, 2016, 1-14.[25] Di Wang, Hei-Kiu Wong, Yi-Bin Feng, et al. Paeoniflorin, A natural neuroprotective agent, modulates multiple anti-Apoptotic and proapoptotic pathwaysin differentiated PC12 Cells[J]. Cell Mol Neurobiol, 2013, 33: 521-529.[26] Chen D M, Xiao L, Cai X, et al. Involvement of multitargets in paeoniflorin induced preconditioning [J]. J Pharmacol Exp Ther, 2006, 319(1): 165-180.[27] Guo Ruo-bing, Wang Guo-feng, Zhao An-peng, et al. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kB mediated inflammatory Responses[J]. Plos one, 2012, 7(11): e49701.[28] 谢玮蓉, 张刚. PI3K/AKT/Bcl-2凋亡信号传导通路的研究进展[J]. 中国当代医药, 2015, 22(30): 22-25.[29] 王小雄, 司瑞, 邵虹, 等. 红景天苷抑制缺血/再灌注诱导的心肌微血管内皮细胞凋亡[J].中国心血管杂志, 2015, 20(1): 57-61.[30] Hers I, Vincent E E, Tavare J M. AKT signaling in health and disease[J]. Cell Signal, 2011, 23(10): 1515-1527.[31] 仇志富, 颜勇, 吴晓光. PI3K/Akt信号转导通路与神经细胞凋亡研究进展[J]. 中风与神经疾病杂志, 2015, 32(10): 952-953.[32] 刘玲, 王淑英, 王建刚. PI3K/Akt通路在芍药苷抗Aβ_(25-35)诱导PC12细胞凋亡中的作用[J]. 中国中药杂志, 2014, 39(20): 4045-4049.[33] Valavanidis Athanasios, Vlachogianni Thomais, Fiotakis Konstantinos, et al. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung car- cinogenesis through reactive oxygen species mechanisms[J]. Int J Environmental Research and Public Health, 2013, 109: 3886-3907.[34] 钟树志, 马世平, 洪宗元. 芍药苷活化Nrf2/ARE通路减轻Aβ_(1-42)诱导的大鼠海马神经元损伤[J]. 药学学报, 2013, 48(8): 1353-1357.[35] Zhang Yun-long, Tan Feng, Xu Ping-yi, et al. Recent advance in the relationship between exicitatory amino acid transporters and Parkinson’s disease[J]. Neural Plast, 2016, 2016: 8941327. Doi: 10.1155/2016/8941327[36] Nana Kudow, Daisuke Miura, Michael Schleyer, et al. Preference for and learning of amino acid in larval Drosophila[J]. Bio Open, 2017, Doi: 10.1242/bio.020412.[37] Yoshimitsu Kiriyama, Hiromi Nochi. D-Amino acids in the nervous and endocrine systems[J]. Scientifica(Cairo), 2016, 2016: 6494621.[38] Tassia R Costa, Danilo L Menaldo, Karina F Zoccal, et al. CR-LAAO, an L-amino acid oxidase from Calloselasma rhodostoma venom, as a potentioal tool for developing novel immunotherapeutic strategies against cancer[J]. Sci Rep, 2017, 7:42673.[39] 王蕾, 赵明静, 杨涛, 等. 氨基酸类神经递质与认知活动关系及中医药应用的研究进展[J]. 中国医药导报, 2016, 13(35): 40-43.[40] 李冬梅, 车薇, 李霞, 等. 芍药苷对脑缺血对脑缺血再灌注沙土鼠ATP酶和兴奋性氨基酸的影响[J]. 中国药物警戒, 2014, 11(12): 717-720.[41] Athineos Philippu. Nitric oxide: A universal modulator of brain function[J]. Curr Med Chem, 2016, 23(24): 2643-2652.[42] Marco A Mori, Ana Marcia Delattre, Bruno Carabelli, et al. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson's disease is mediated by a reduction of inducible nitric oxide synthase[J]. Nutr Neurosci, 2017, 21: 1-11.[43] Chen Chang, Du Ping, Wang Jun-jie. Paeoniflorin ameliorates acute myocardial infarction of rats by inhibiting inflammation and inducible nitric oxide synthase signaling pathways[J]. Molecular Medicine Reports, 2015, 12(3): 3937-3943.[44] Chen Chang, Du Ping, Wang Jun-jie. Paeoniflorin ameliorates acute myocardial infarction of rat by inhibiting inflammation and inducible nitric oxide synthase signaling pathways[J]. Mol Med Rep, 2015, 12(3): 3937-3943.[45] Jocelyn Stockwell, Elisabet Jakova, Feancisco S. Adenosine A1 and A2A receptors in the Brain: Current research and their role in neurodegeneration[J]. Molecules, 2017, 22(4): 676.[46] Zhong Min, Song Wan-ling, Xu Ye-chun. Paeoniflorin ameliorates ischemic neuronal damage in vitro via adenosine A1 receptor-mediated transactivation of epidermal growth factor receptor[J]. Acta Pharmacol Sin. 2015, 36(3): 298-310.[47] 蔡江晖, 饶梦琳, 唐蜜, 等.芍药苷激活2型大麻素受体保护脑缺血再灌注大鼠海马神经元[J]. 细胞与分子免疫学杂志, 2015, 31(4): 443-447.[48] 刘玲, 王淑英. 芍药苷对Aβ_(25-35)诱导PC12细胞氧化损伤的影响[J]. 中国中药杂志, 2013, 38(9): 1318-1322.[49] 李冬梅, 徐丽, 张淑珍, 等. 芍药苷对沙土鼠脑缺血再灌注损伤的保护作用[J]. 医学研究生学报, 2014, 27(11): 1139-1142.[50] 温新丽, 李世朋, 新吉乐, 等. 芍药苷对过氧化氢诱导SH-SY5Y细胞凋亡的保护作用[J]. 时珍国医国药, 2013, 24(4): 828-830.[51] Enrique Perez-Paya, Mar Orzaez, Laura Mondragon, et al. Molecules that modulate Apaf-1 activity[J]. Med Res Rev, 2011, 31(4): 649-675.[52] 刘天意. 芍药苷对大鼠脑缺血再灌注损伤细胞凋亡的影响及其作用机制[J].西方传统中医杂志, 2016, 29(5): 8-11.[53] 陈广斌, 吴铁, 林坚涛等. 芍药苷对新生大鼠缺氧缺血性脑损伤中脑细胞凋亡的影响[J]. 华西药学杂志, 2009, 24(4): 354-356.[54] Peter S Vosler, Steven H Graham, Lawrence R Wechsler, et al. Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics[J]. Stroke, 2009, 40(9): 3149-3155.[55] Beatrice DOrsi, Julia Mateyka, Jochen H M. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok[J]. Neurochem Int, 2017, doi.org/10.1016/j.neuint.2017.03.010[56] Zheng Mei-zhu, Liu Chun-ming, Fan Ya-jun, et al. Neuroprotection by paeoniflorin in the MPTP mouse model of Parkinson’s disease[J]. Neuropharmacology, 2017, 116: 412-420. |