ACTA NEUROPHARMACOLOGICA ›› 2020, Vol. 10 ›› Issue (3): 47-53.DOI: 10.3969/j.issn.2095-1396.2020.03.009
Previous Articles Next Articles
YANG Xu-hua,DU Shuang,SHEN Li-xia,HAO Jun-rong
Online:
2020-06-26
Published:
2021-05-14
Contact:
郝军荣,讲师;研究方向:神经药理学及相关药物;Tel:+86-0313-4029306,E-mail:haojunrong3@163.com
About author:
杨旭华,2016 级本科生;研究方向:神经药理学;E-mail:706674404@qq.com
Supported by:
CLC Number:
YANG Xu-hua, DU Shuang, SHEN Li-xia, HAO Jun-rong. Research Progress in Drug Treatment of Alzheimer’s Disease[J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 47-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2020.03.009
[1] 张振馨, Zahner G E, Roman G C, 等. 中国北京、 西安、 上海和成都地区痴呆亚型患病率的研究[J]. 中国现代神经疾病杂志, 2005,5(3):156-157. [2] 王盼, 谢桑马, 周波, 等. 阿尔茨海默病和遗忘型轻度认知功能损害的海马功能及解剖连接异常[C].第四届全国痴呆与认知障碍学术研讨会及高级讲授班论文汇编,2015:275-276. [3] Jeffrey L Cummings, Travis Morstorf, Kate Zhong. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures[J]. Alzheimer’s Res & Ther, 2014, 6: 37. [4] John Hardy, Dennis J Selkoe. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5590): 353-356. [5] Zheng Hui, Edward H Koo. Biology and pathophysiology of the amyloidprecursor protein[J]. Mol Neurodegener, 2011, 6(1): 27. [6] 刘心朗, 贾建新. β淀粉样蛋白在阿尔茨海默病中的作用机制研究进展[J]. 解剖学杂志, 2020, 43(1), 66-69. [7] Amy M Pooler, Wendy Noble, Diane P Hanger. A role for tau at the synapse in Alzheimer’s disease pathogenesis[J]. Neuropharmacology, 2014, 76(A): 1-8. [8] 李晓莹, 张敏. 阿尔茨海默病发病机制分析[J]. 世界最新医学信息文摘, 2019, 19(44): 34-35. [9] Han-Chang Huang, Jiang Zhao-Feng. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease[J]. J Alzheimer’s Dis, 2009, 16(1):15-27. [10] 王威丽,宋沧桑. 阿尔兹海默病发病机制的研究进展及临床用药[J].中国药物评价, 2019, 36(3): 48-53. [11] 张帅, 艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(48): 11-22. [12] Martin R Farlow, Niels Andreasen, Marie-Emmanuelle Riviere, et al. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease [J]. Alzheimer’s Research & Therapy, 2015, 7(1): 23. [13] Ramit Ravona-Springer, Michael Davidson, Shionmo Noy. Is the distinction between Alzheimer’s disease and vascular dementia possible and relevant? [J]. Dialogues Clin Neurosci, 2003, 5(1): 7-15. [14] Pieter Jelle Visser, Frans Verhey, Dirk L Knol, et al. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study[J]. Lancet Neurol, 2009, 8(7): 619-627. [15] Raj N Kalaria, Cllve Ballard. Overlap between pathology of Alzheimer disease and vascular dementia[J]. Alzheimer Dis Assoc Disord, 1999, 13(3): S115–S123. [16] Shi Jiong, George Perry, Mark A Smith, et al. Vascular abnormalities:the insidious pathogenesis of Alzheimer’s disease[J].Neurobiol Aging, 2000, 21(2): 357-361. [17] Petrovitch H, Lon R White, Izmirilia G, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study[J]. Neurobiol Aging, 2000, 21(1): 57-62 . [18] John T O’Brien, Hugh S Markus. Vascular risk factors and Alzheimer’s disease[J]. BMC Med,2014,12:218. [19] Raffaella Valenti, Leonardo Pantoni, Hugh S Markus. Treatment of vascular risk factors in patients with a diagnosis of Alzheimer’s disease: a systematic review[J]. BMC Med, 2014, 11(12): 160. [20] Lu Feng-ping, Lin Kun-pei, Kuo Hsu-ko. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis[J]. PLoS One, 2009, 4(1): e4144. [21] Jose A Luchsinger, Tang Ming-xin, Steven Shea, et al. Hyperinsulinemia and risk of Alzheimer disease[J]. Neurology, 2004, 63(7):1187-1192. [22] 赵鹤, 邵华, 牛一民, 等. 糖尿病治疗药物改善阿尔兹海默病患者认知障碍的研究现状[J]. 中国临床药理学杂志, 2017, 33(253): 171-174. [23] Craft S, Peskind E, Schwartz M W et al. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype[J]. Neurology, 1998, 50(1): 164-168. [24] William A Banks, Jonathan B Jaspan, Huang Wei-tao, et al. T ransport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin[J]. Peptides, 1997, 18(9): 1423-1429. [25] Ana Martinez, Carmen Gil, Daniel I Perez. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment[J]. Int J Alzheimer’s Dis, 2011, 2011(9-10): 280-502. [26] 李佳, 欧思琳, 李茹冰. 2型糖尿病与阿尔兹海默症的相关性研究[J]. 暨南大学学报: 自然科学与医学版, 2019, 40(199): 69-76. [27] Suzanne Craft, Laura D Baker, Thomas Montine, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial[J]. Arch Neurol, 2012, 69(1): 29-38. [28] Corder E H, Saunders A M, Strittmatter W J et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families[J]. Science, 1993, 261(5123): 921-923. [29] Farrer L A, Cupples L A, Haines J L, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease.A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium[J]. JAMA, 1997, 278(16): 1349-1356. [30] Chia-Chen Liu, Takahisa Kanekiyo, Xu Hua-xi, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy[J]. Nat Rev Neurol, 2013, 9: 106-118. [31] Inella Morales, Leonardo Guzmán-Martínez, Cristobal Cerda-Troncoso, et al. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches[J]. Front Cell Neurosci, 2014, 8(1): 112. [32] Linda J Van Eldik, Maria C Carrillo, Patricia E Cole, et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease[J]. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 2016, 2(2): 99-109. [33] Darin Jaturapatporn, Mokhtar Gad EI Kareem Nasr Isaac, Jenny McCleery, et al. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease[J]. Cochrane Database Syst Rev, 2012, 15(2):CD006378. [34] John C Breitner, Laura D Baker, Thomas J Montine, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial[J]. Alzheimer’s Dement, 2011, 7(4): 402-411. [35] Kenneth Hensley. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation[J]. Alzheimer’s Dement, 2010, 21(1): 1-14. [36] 张争奇, 曹明明. 胆碱酯酶抑制剂治疗帕金森病痴呆患者的临床研究[J]. 大家健康, 2017, 11(1): 159. [37] 彭昭, 王红雁, 杨玉敏, 等. 阿尔茨海默病的药物治疗与临床药学监护[J]. 中国医院用药评价与分析, 2019, 19(184): 130-133. [38] Chen-Chen Tan, Jin-Tai Yu, Hui-Fu Wang, et al. Efficacy and safety of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis[J]. J Alzheimers Dis, 2014, 41(2): 615-631. [39] Dean Maxwell Robinson, Gillian M Keating. Memantine: a review of its use in Alzheimer’s disease[J].Drugs, 2006, 66(11): 1515-1534. [40] Sastre A Areosa, Sherriff F, McShane R. Memantine for dementia[J]. Cochrane Database Syst Rev, 2003, (3): CD003154. [41] Alireza Atri, Jose L Molinuevo, Ole Lemming, et al. Memantine in patients with Alzheimer’s disease receiving donepezil: new analyses of efficacy and safety for combination therapy[J]. Alzheimer’s Res Ther, 2013, 5(1): 6. [42] Laura Ghezzi, Ello Scarpini, Daniela Galimberti. Disease-modifying drugs in Alzheimer’s disease[J]. Drug Des Dev Ther, 2013, 7(default): 1471-1478. [43] Robert Vassar. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease[J]. Alzheimers Res Ther, 2014, 6: 89. [44] David B Henley, Patrick C May, Robert A Dean, et al. Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease[J]. Exp Opin Pharmacother, 2009, 10(10): 1657-1664. [45] Rachelle Doody, Rema Raman, Martin R Farlow, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease[J]. N Engl J Med, 2013, 369(4): 341-350. [46] Robert C Green, Lon S Schneider, David A Amato, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial[J].JAMA, 2009, 302: 2557-2564. [47] Robert L Martone, Zhou Hua-lin, Kevin Atchison, et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ-secretase for the treatment of Alzheimer disease[J]. J Pharmacology and Experimental Therapeutics, 2009, 331(2): 589-608. [48] Sophie West, Praveen Bhugra. Emerging drug targets for Aβ and tau in Alzheimer’s disease:a systematic review [J]. British J Clinical Pharmacology, 2015, 80(2): 221-234. [49] David A Loeffler. Intravenous immunoglobulin and Alzheimer’s disease: what now? [J]. Neuroinflammation, 2013, 10(1): 70. [50] Claude M Wischik, Charles R Harrington, John M.D. Storey. Tau-aggregation inhibitor therapy for Alzheimer’s disease[J]. Biochem Pharmacol, 2014, 88(2014): 529-539. [51] Pierre N Tariot, Paul S Aisen. Can lithium or valproate untie tangles in Alzheimer’s disease? [J].Clin Psychiatry, 2009, 70(6): 919-921. [52] Claude Michel Wischik, Roger T Staff, Damon Wischik, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease[J]. Alzheimer’s Dis, 2015, 44(2): 705-720. [53] Paula I Moreira, Sandra M Cardoso, Marcilio Sampaio Santos, et al. The key role of mitochondria in Alzheimer’s disease [J]. J Alzheimer’s Disease, 2006, 9(2): 101-110. [54] Joseph S Tauskela. MitoQ-a mitochondria-targeted antioxidant[J]. IDrugs, 2007, 10(6): 399-412. [55] Heldi D Nelson, Linda L Humphrey, Peggy Nygren, et al. Postmenopausal hormone replacement T therapy: scientific review [J]. JAMA, 2002, 288(7): 872-881. [56] Victor Henderson, Paganini-Hill A, Miller B L, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind placebo-controlled trial [J]. Neurology, 2000, 54(2):295-301. [57] Elsuke Shimizu, Koichi Kawahara, Makoto Kajizono, et al. IL-4 induced selective clearance of oligomeric beta-amyloid peptide(1-42) by ratprimary type 2 microglia[J]. J Immunol, 2008, 181(9): 6503-6513. [58] 王士博, 拓西平, 张文俊, 等. 阿司匹林对阿尔茨海默病模型鼠学习记忆能力及海马区炎性因子表达水平的影响[J]. 中华老年多器官疾病杂志, 2017, 16(4): 59-63. [59] 孙振令, 蒋圣娟. 氧化应激与阿尔茨海默病: 病理学与治疗学综述(英文)[J]. 中国临床康复, 2004, 8(25): 200-202. [60] 黄淑芳, 黄文海, 胡永洲. 多靶点阿尔茨海默症治疗药物的研究进展[J]. 中国药物化学杂志, 2011, 21(104):25-33. [61] Charles Pyke, R Scott Heller, Rikke Kaae Kirk, et al. GLP-1 receptor Localization money and human tissue: novel distribution revealed with extensively validated monoclonal antibody [J]. Endocrinology, 2014, 155(4): 1280-1290. [62] 唐晶, 董齐, 伊然. 胰高血糖素样肽1及其类似物治疗阿尔茨海默病作用机制研究进展[J].中国临床神经科学, 2015, 23(1): 95-101. [63] 高岩, 张兰. 中药在阿尔茨海默病中的治疗作用[J]. 中国药理学与毒理学杂志, 2019, 33(34): 432. [64] Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories[J]. Neurobiol Aging, 1997, 18(4): 351-357. |
[1] | HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64. |
[2] | ZHANG Hao-ting, SONG Gui-qin, CUI Ruo-tong, HAO Min, WANG Wen-dong. Mining Target Genes of Alzheimer’s Disease Associated with Biological Clock by Bioinformatics Analysis [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 1-7. |
[3] | XIA Xiao-wen,SONG Chun-hong,QIAO Ming-qi, et al. Research Progress on the Mechanism of PMDD [J]. Acta Neuropharmacologica, 2019, 9(6): 36-40. |
[4] | LONG Sen,CHEN Jia-ye,HAN Feng. Mechanisms of Autism Spectrum Disorder and Pharmacological Approach [J]. Acta Neuropharmacologica, 2016, 6(6): 55-64. |
[5] | XIAO Han-ping1, WANG Shuo-yu2, LI Hua-nan2, ZHANG Shui-yin1, GU Bing1. Pharmacotherapies for Spinal Cord Injury: Current Status [J]. Acta Neuropharmacologica, 2012, 2(2): 32-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||