Acta Neuropharmacologica ›› 2014, Vol. 4 ›› Issue (4): 42-49.
Previous Articles Next Articles
Zhang Zhao, Chu Shi-feng, Huang Hui-yong, Chen Nai-hong
Online:
2014-08-26
Published:
2015-01-20
Contact:
陈乃宏,男,研究员,博士生导师,研究方向:神经系统疾患创新药物开发及作用机制,Tel/Fax: 010-63165177, E-mail: chennh@imm.ac.cn
About author:
张钊,女,博士生,研究方向:神经药理学和神经分子生物学,Tel/Fax: 010-63165182, E-mail:zhangzhao@imm.ac.cn
Supported by:
国家自然科学基金项目(No. 81274122、No. 81102831、No. 81273629、No. 21272278、No. 81473376、No.U1402221),国家“重大新药创制”科技重大专项(No. 2012ZX09301002-004、No. 2012ZX09301002-001-002),国家高技术研究发展计划(863 计划)(No. 2012AA020303),教育部博士点基金重点项目(No. 20121106130001),北京市自然科学基金(No. 7131013、No. 7142115),新药作用机制研究与药效评价北京市重点实验室资助项目(No. BZ0150),协和青年基金和中央高校基本科研业务费专项资金(No. 3332013157)
CLC Number:
Zhang Zhao, Chu Shi-feng, Huang Hui-yong, Chen Nai-hong. Long Noncoding RNAs:Research Strategies and Progresses in Neurodegenerative Diseases[J]. Acta Neuropharmacologica, 2014, 4(4): 42-49.
[1] The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome [J]. Nature, 2012, 489 (7414):57-74.[2] Ryan J Taft, Ken C Pang, Timothy R Mercer, et al. Non-coding RNAs: regulators of disease [J]. J Pathology, 2010, 220 (2):126-39.[3] Carolyn J Brown, Andrea Ballabio, James L Rupert, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome [J]. Nature, 1991, 349 (6304):38-44.[4] Marisa S Bartolomei, Sharon Zemel, Shirley M Tilghman. Parental imprinting of the mouse H19 gene [J]. Nature, 1991, 351 (6322):153-155.[5] Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs [J]. Nature, 2002, 420 (6915):563-573.[6] Cristina Tufarelli, Jackie A Stanley, David Garrick, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease [J]. Nature Genetics, 2003, 34 (2):157-165.[7] Rebecca A Chodroff, Leo Goodstadt, Tamara M Sirey, et al. Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes [J]. Genome biology, 2010, 11 (7):R72.[8] Yamini Arthanari, Christian Heintzen, Sam Griffiths-Jones, et al. Natural antisense transcripts and long non-coding RNA in Neurospora crassa [J]. PloS One, 2014, 9 (3):e91353.[9] Chris P Ponting, Peter L Oliver, Wolf Reik. Evolution and functions of long noncoding RNAs [J]. Cell, 2009, 136 (4):629-641.[10] Tim R Mercer, Dagmar Wilhelm, Marcel E Dinger, et al. Expression of distinct RNAs from 3' untranslated regions [J]. Nucleic Acids Res, 2011, 39 (6):2393-2403.[11] Tiffany Hung, Yulei Wang, Michael F Lin, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters [J]. Nature Genet, 2011, 43 (7):621-629.[12] Ulf A Orom, Thomas Derrien, Malte Beringer, et al. Long noncoding RNAs with enhancer-like function in human cells [J]. Cell, 2010, 143 (1):46-58.[13] Claus M Azzalin, Patrick Reichenbach, Lela Khoriauli, et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends [J]. Science, 2007, 318 (5851):798-801.[14] Sara Massone, Irene Vassallo, Gloria Fiorino, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease [J]. Neurobiology Dis, 2011, 41 (2):308-317.[15] Bernard Delphine, Prasanth Kannanganattu V, Tripathi Vidisha, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression [J]. J EMBO, 2010, 29 (18):3082-3093.[16] Ahmad M Khalil, Mitchell Guttman, Maite Huarte, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression [J]. Proc Nat Acad Sci USA, 2009, 106 (28):11667-11672.[17] Marcel E Dinger, Paulo P Amaral, Tim R Mercer, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation [J]. Genome Res, 2008, 18 (9):1433-1445.[18] Miao-Chih Tsai, Ohad Manor, Wan Yue, et al. Long noncoding RNA as modular scaffold of histone modification complexes [J]. Science, 2010, 329 (5992):689-693.[19] Chi C Gu, D C Rao, Gary Stormo, et al. Role of gene expression microarray analysis in finding complex disease genes [J]. Genetic Epidemiol, 2002, 23 (1):37-56.[20] Tim R Mercer, Irfan A Qureshi, Solen Gokhan, et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation [J]. BMC Neurosci, 2010, 11:14.[21] Hitzemann R, Bottomly D, Darakjian P, et al. Genes, behavior and next-generation RNA sequencing [J]. Genes Brain Behav, 2013, 12 (1):1-12.[22] Lin Ming-yan, Erika Pedrosa, Abhishek Shah, et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders [J]. PloS One, 2011, 6 (9):e23356.[23] Anna Esteve-Codina, Robert Kofler, Nicola Palmieri, et al. Exploring the gonad transcriptome of two extreme male pigs with RNA-seq [J]. BMC Gen, 2011, 12:552.[24] Huang Qi-chao, Lin Biao-yang, Liu Han-qiang, et al. RNA-Seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma [J]. PloS One, 2011, 6 (10):e26168.[25] Jae-Hyung Lee, Gao Chen, Peng Guang-dun, et al. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts [J]. Circulation Res, 2011, 109 (12):1332-1341.[26] Masaaki Furuno, Ken C Pang, Noriko Ninomiya, et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs [J]. PLoS Genet, 2006, 2 (4):e37.[27] Radha Raman Pandey, Tanmoy Mondal, Faizaan Mohammad, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation [J]. Molecular Cell, 2008, 32 (2):232-246.[28] Ritu Jain, Tiffany Devine, Ajish D George, et al. RIP-Chip analysis: RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling [J]. Methods Mol Biol, 2011, 703:247-263.[29] Zhao Jing, Toshiro K Ohsumi, Johnny T Kung, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq [J]. Molecular Cell, 2010, 40 (6):939-953.[30] Liao Qi, Xiao Hui-xiao, Dechao Bu, et al. ncFANs: a web server for functional annotation of long non-coding RNAs [J]. Nucleic Acids Res, 2011, 39 (Web Server issue):W118-W124.[31] Matteo Bellucci, Federico Agostini, Marianela Masin, et al. Predicting protein associations with long noncoding RNAs [J]. Nature Methods, 2011, 8 (6):444-445.[32] Marcel E Dinger, Ken C Pang, Tim R Mercer, et al. NRED: a database of long noncoding RNA expression [J]. Nucleic Acids Rese, 2009, 37 (Database issue):D122-D126.[33] Mohammad Ali Faghihi, Farzaneh Modarresi, Ahmad M Khalil, et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase [J]. Nature Med, 2008, 14 (7):723-730.[34] Mohammad Ali Faghihi, Zhang Ming, Huang Jia, et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function [J]. Genome Biol, 2010, 11 (5):R56.[35] Mus Ei, Patrick R Hof, Henri Tiedge. Dendritic BC200 RNA in aging and in Alzheimer's disease [J]. Proc Natl Acad Sci USA, 2007, 104 (25):10679-10684.[36] Ivan Arisi, Mara D'Onofrio, Rossella Brandi, et al. Gene expression biomarkers in the brain of a mouse model for Alzheimer's disease: mining of microarray data by logic classification and feature selection [J]. J Alzheimer's Dis, 2011, 24 (4):721-738.[37] Agnes Petit, Toshitaka Kawarai, Erwan Paitel, et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations [J]. J Biol Chem, 2005, 280 (40):34025-34032.[38] Camilla Scheele, Natasa Petrovic, Mohammad A Faghihi, et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function [J]. BMC Genomics, 2007, 8:74.[39] Masahito Shimojo. Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued [J]. J Biol Chem, 2008, 283 (50):34880-34886.[40] Rory Johnson, Nadine Richter, Ralf Jauch, et al. Human accelerated region 1 noncoding RNA is repressed by REST in Huntington's disease [J]. Physiological Genomics, 2010, 41 (3):269-274.[41] Daniel W Chung, Dudnicki D Rudnicki, Yu Lan, et al. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression [J]. Human Mol Genet, 2011, 20 (17):3467-3477.[42] Mauro Cozzolino, Alberto Ferri, Cristiana Valle, et al. Mitochondria and ALS: implications from novel genes and pathways [J]. Molecular and Cellular Neurosciences, 2013, 55:44-9.[43] Edward Pokrishevsky, Leslie I Grad, Masoud Yousefi, et al. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis [J]. PloS One, 2012, 7 (4):e35050.[44] Yoshinori Nishimoto, Shinichi Nakagawa, Tetsuro Hirose, et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis [J]. Molecular Brain, 2013, 6:31.[45] George L Lee, Albert Dobi, Shiv Srivastava. Prostate cancer: diagnostic performance of the PCA3 urine test [J]. Nature Reviews Urology, 2011, 8 (3):123-124.[46] Aya Mizrahi, Abraham Czerniak, Tally Levy, et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences [J]. J Transl Med, 2009, 7:69. |
[1] | LI Hui, YANG Jin-shui, XUE Qian. A Case of Huntington's Disease with Involuntary Movements of the Limbs as the First Symptom Combined with Dysarthria in the Early Stages of the Disease [J]. ACTA NEUROPHARMACOLOGICA, 2024, 14(6): 31-. |
[2] | ZHANG Yuan-qing, LIN Yu, HUANG Li. Study on the Effects of Vitamin D on DNA Methylation in Alzheimer's Disease Cell Models [J]. ACTA NEUROPHARMACOLOGICA, 2024, 14(6): 39-. |
[3] | ZHANG Xin, YAO Si-fan, MA Meng-fan, SHEN Li-xia. Recent Progress in the Metabolomics of Alzheimer's Disease [J]. ACTA NEUROPHARMACOLOGICA, 2024, 14(5): 47-. |
[4] | ZHAO Yu-ting, YIN Hong-yan, GUO Chun-yan. Explore the Mechanism of Paeoniae Radix Alba Delaying Alzheimer's Disease Based on Network Pharmacology and Molecular Docking [J]. ACTA NEUROPHARMACOLOGICA, 2024, 14(5): 1-. |
[5] | YAO Si-fan, ZHANG Xin, SHEN Li-xia. Effects of Tau Protein on Mitochondrial Function in Alzheimer's Disease [J]. ACTA NEUROPHARMACOLOGICA, 2024, 14(4): 54-. |
[6] | WANG Tian-xu, LIU Ci, CUI Yong-yuan, ZHANG Xin, WU Miao-miao, SHEN Li-xia. Explore the Mechanism of Quercetin in the Treatment of Alzheimer's Disease by Network Pharmacology and Molecular Docking [J]. ACTA NEUROPHARMACOLOGICA, 2024, 14(2): 31-. |
[7] | YIN Hong-yan, YOU Si-han, GUO Chun-yan. Research Progress of Core Markers and Other Markers of Alzheimer's Disease [J]. ACTA NEUROPHARMACOLOGICA, 2023, 13(6): 45-. |
[8] | ZHU Jing-yi , FAN Jian-chun, YU Ai-mei. Research Status on the Neuroprotective Effect of Probucol [J]. ACTA NEUROPHARMACOLOGICA, 2023, 13(6): 50-. |
[9] | . Exploring the Effect and Mechanism of Pterostilbene on Alzheimer’s Disease Based on Network Pharmacology [J]. ACTA NEUROPHARMACOLOGICA, 2023, 13(5): 1-. |
[10] | BAI Jing-ru, YOU Si-han, YIN Hong-yan, YANG Song-rui, GUO Chun-yan. Predicting the Target of Peach Kernel in the Treatment of Parkinson's Disease Based on Network Pharmacology [J]. ACTA NEUROPHARMACOLOGICA, 2023, 13(3): 31-. |
[11] | YU Mei-hua, ZHOU Jing, GAO Shi-jie, BAO Jin-feng. Mechanism of Sirtuins in Neurodegenerative Diseases [J]. ACTA NEUROPHARMACOLOGICA, 2023, 13(1): 35-. |
[12] | GUO Bao, LIU Zi-ming, JING Yong-shuai, ZHANG Dan-shen. Correlation Between Wnt Signaling Pathway and Alzheimer's Disease and Its Targets [J]. ACTA NEUROPHARMACOLOGICA, 2023, 13(1): 56-. |
[13] | SI Wen-ying, HOU Yu-qing, SUN Xiao-jing, MENG Xian-yong, DONG Xiao-hua. Gene Therapy for Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2022, 12(6): 51-56. |
[14] | ZHANG Zhi-qing, ZHANG Yong-cai, LIU Lin-xuan, LI Ren-qing, LIU Ji-jia, DU Jing-kao, JIANG Bei, WEI Huiping, SU Li-ning. Bioinformatics Analysis of the Relationship between Exosomal ceRNA Regulatory Network and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2022, 12(4): 23-40. |
[15] | CAI Yu-shan, ZHAO Shuai. Role of PPARβ/δ in Neurodegenerative Diseases [J]. ACTA NEUROPHARMACOLOGICA, 2022, 12(4): 41-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||