Previous Articles Next Articles
LI Jiang-man,WANG Yi-di,WANG Feng-ping,LI Wei
Online:
2017-12-26
Published:
2017-12-01
Contact:
李炜,女,副教授,硕士研究生导师;研究方向:神经药理学;E-mail:leewei318@163.com
About author:
李江曼,女,在读硕士研究生;研究方向:神经药理学
Supported by:
CLC Number:
LI Jiang-man,WANG Yi-di,WANG Feng-ping,LI Wei. Research Progress of Cerebral Ischemia Reperfusion Injury and Its Mechanisms Related to Astrocytes[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2017.06.008.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2017.06.008
[1] 吴江,贾建平.神经病学.第3版[M].北京:人民卫生出版社,2015:158. [2] Helena Pivonkova, Miroslava Anderova. Altered homeostatic functions in reactive astrocytes and their potential as a therapeutic target after brain ischemic injury[J]. Current Pharmaceutical Design, 2017, 23(33):5056-5074. [3] Norman H Bass, Helen H Hess, Alfred Pope, et al. Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex[J]. J Comp Neurol, 1971, 143(4):481–490. [4] 詹剑,李小琼,郝仁方. 金钗石斛多糖对局灶性脑缺血-再灌注大鼠的作用[J]. 中国脑血管病杂志, 2017, 14(1): 25-31. [5] Nathalie Rouach, Jacques Glowinski, Christian C Giaume. Activity-dependent neuronal control of gap-junctional communication in astrocytes[J]. J Cell Biology, 2000, 149(7):1513–1526. [6] Alfonso Araque, Rita Sanzgiri, Vladimir Parpura, et al. Astrocyte-induced modulation of synaptic transmission[J]. Can J Physiol Pharmacol, 1999, 77(9):699–706. [7] Toby G Bush, Narman Puvanachandra, Catherine H Horner, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice[J]. Neuron, 1999, 23(2):297–308. [8] Gao Q, Li Yang, Chopp M. Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult[J]. Neuroscience, 2005, 136(1):123–134. [9] Jacque C M, Vinner C, Kujas M, et al. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors[J]. J Neurol Sci, 1978, 35(1):147–155. [10] Liza Q Bundesen, Tracy Aber Scheel, Barbara S Bregman, et al. EphrinB2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats[J]. J Neurosci, 2003, 23(21):7789–7800. [11] Jennifer L Zamanian, Xu Li-jun, Lynette C Foo, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18):6391–6410. [12] Angelo C Lepore, Christine Dejea, Jessica Carmen, et al. Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration[J]. Exp Neurol, 2008, 211(2):423–432. [13] Ozge Tasdemir-Yilmaz, Marc R Freeman. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons[J]. Genes Dev, 2014, 28(1): 20–33. [14] Toby G Bush, Narman Puvanachandra, Catherine H Horner, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice[J]. Neuron, 2014, 23(2):297–308. [15] Shane A Liddelow, Guttenplan K A, Laura E Clarke, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638):481–487. [16] Mark Anderson, Joshua E Burda, Ren Yi-long, et al. Astrocyte scar formation aids central nervous system axon regeneration[J]. Nature, 2016, 532(7598):195–200. [17] Jerry Silver, Jared H Miller. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2):146–156. [18] Kelly Ceyzériat, Laurene Abjean, Maria-Angeles Carrillo-de Sauvage, et al. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? [J]. Neuroscience, 2016, 330: 205–218 [19] He Fei, Ge Wei-hong, Keri Martinowich, et al. A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis[J]. Nat Neurosci, 2005, 8(5):616–625. [20] Regina Kanski, Miriam E van Strien, Paula van Tijn, et al. A star is born: new insights into the mechanism of astrogenesis[J]. Cell Mol Life Sci, 2014, 71(3):433–447. [21] Mattson M P, Meffert M K. Roles for NF-kappaB in nerve cell survival, plasticity, and disease[J]. Cell Death Differ, 2006, 13(5):852–860. [22] Barbara Kaltschmidt, Christian Kaltschmidt. NF-kappaB in the nervous system[J]. Cold Spring Harb Perspect Biol, 2009, 1(3): a001271. [23] Han-Yun Hsiao, Chen Yu-Chen, Chen Hui-mei, et al. A critical role of astrocyte-mediated nuclear factor-kB-dependent inflammation in Huntington’s disease[J]. Hum Mol Genet, 2013, 22(9):1826–1842. [24] Migheli A, Piva Roberto, Christiana Atzori, et al. c-Jun, JNK/ SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis[J]. J Neuropathol Exp Neurol, 1997, 56(12):1314–1322. [25] Gilmore T D. Introduction to NF-kappaB: players, pathways, perspectives[J]. Oncogene, 2006, 25(51): 6680–6684. [26] Carrero I, Gonzalo M R, Martin B, et al. Oligomers of b-amyloid protein (Ab1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1b, tumour necrosis factor-a, and a nuclear factor k-B mechanism in the rat brain[J]. Exp Neurol, 2012, 236(2):215–227. [27] Lian Hong, Yang Li, Cole Allysa, et al. NFkB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease[J]. Neuron, 2015, 85(1):101–115. [28] Han-Yun Hsiao, Chen Yu-chen, Chen Hui-mei, et al. A critical role of astrocyte-mediated nuclear factor-kB-dependent inflammation in Huntington’s disease[J]. Hum Mol Genet, 2013, 22(9):1826–1842. [29] 陈戟,谭秀华,庞韬,等. 右美托咪定对全脑缺氧缺血损伤大鼠海马内星形胶质 细胞 VEGF 表达的影响[J], 实用药物与临床, 2017, 20(3):241-244 [30] 刘微, 张洋, 郭建超,等. 柚皮苷对脑缺血再灌注损伤的保护作用[J],中风与神经疾病杂志, 2017, 34(4): 292-294. [31] Wang X, Zhang M, Yang S D, et al. Pre-ischemic treadmill training alleviates brain damage via GLT-1 mediated signal pathway after ischemic stroke in rats[J]. Neuroscience, 2014, 274 : 393-402. [32] 余萍萍,王莉,唐凡人,等. 白藜芦醇对大鼠脑缺血/再灌注损伤后星形胶质细胞活化的影响[J]. 中国药理学通报, 2015 , 31( 9) : 1228 -1233 [33] Ouyang Yi-bing, Xu Li-jun, Yue Si-biao, et al. Neuroprotection by astrocytes in brain ischemia: importance of microRNAs[J]. Neurosci Lett, 2014, 17,565:53-8 [34] Zhu Sheng-mei, Jiang B, Sun H, et al. Propofol inhibits aquaporin 4 expression through a protein kinase C-dependent pathway in an astrocyte model of cerebral ischemia/reoxygenation[J]. Anesth Analg, 2009, 109(5):1493-1499. [35] Hertz Leif. Intercellular metabolic compartmentation in the brain: past, present and future[J]. Neurochem Int, 2004, 45(2-3):285-296 [36] Ernesto Carafoli, Luigia Santella, Donata Branca, et al. Generation, control, and processing of cellular calcium signals [J]. Crit Rev Biochem Mol Biol, 2001, 36(2):107-260 [37] Seiichi Oyadomari, Eiichi Araki, Koji Mori. Endoplasmic reticulum stress-mediated ap optosis in pancreatic beta-cells[J]. Apoptosis, 2002, 7(4):335-345. [38] Amanda L Sheldon, Michael B Robinson. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention [J]. Neurochem Int, 2007, 51(6-7):333-355. [39] 赵青赞,李治华,任绣花,等.谷氨酸在星形胶质细胞培养中对CX43磷酸化的调节机制[J]. 神经解剖学杂志, 2015, 31(1):19-24 [40] Heidi M McBride, Margaret Neuspiel, Sylwia Wasiak. Mitochondria: More than just a powerhouse[J]. Curr Biol, 2006, 16(14):R551–R560. [41] Pedro Monteiro, Paulo J Oliveira, Lino Gonçalves, et al. Mitochondria: Role in ischemia, reperfusion and cell death[J]. Rev Port Cardiol, 2003, 22(2):233–254. [42] John W Thompson, Srinivasan V Narayanan, Kevin B Koronowski, et al. Signaling pathways leading to ischemic mitochondrial neuroprotection[J]. J Bioenerg Biomembr, 2015, 47(1-2):101–110. [43] Donna L Granger, D Neil Granger. Pathophysiology of ischaemia-reperfusion injury[J]. J Pathol, 2000, 190(3):255–266. [44] Katherine A Cottrill, Stephen Y Chan, Joseph Loscalzo. Hypoxamirs and mitochondrial metabolism[J]. Antioxid Redox Signal, 2014, 21(8):1189–1201. [45] Lee Hsin-Ling, Chen Chwen-Lih, Steve T Yeh, et al. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion[J]. Am J Physiol Heart Circ Physiol, 2012, 302(7):H1410–H1422. [46] Wang Qun, Albert Y Sun, Agnes Simonyi, et al. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: Role of nadph oxidase-derived ros[J]. Free Radic Biol Med, 2007, 43(7):1048–1060. [47] Sang Won Suh, Byung Seop Shin, Ma Hua-long, et al. Glucose and nadph oxidase drive neuronal superoxide formation in stroke[J]. Ann Neurol, 2008, 64(6):654–663. [48] Sergey Dikalov. Cross talk between mitochondria and nadph oxidases[J]. Free Radic Biol Med, 2011, 51(7):1289–1301. [49] Kelly A Graham, Mariola Kulawiec, Kjerstin M Owens, et al. NADPH oxidase 4 is an oncoprotein localized to mitochondria[J]. Cancer Biol Ther, 2010, 10(3):223–231. [50] Theodore Kalogeris, Bao Yi-min, Ronald J Korthuis. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2:702–714. [51] Alicia J Kowaltowski, Nadja C de Souza-Pinto, Roger F Castilho, et al. Mitochondria and reactive oxygen species[J]. Free Radic Biol Med, 2009, 47(4):333–343. [52] Petr Jezek, Lydie Hlavatá. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism[J]. Int J Biochem Cell Biol, 2005, 37(12):2478–2503. [53] Magdalena L Circu, Tak Yee Aw. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radic Biol Med, 2010, 48(6):749–762. [54] Chen Hai, Hideyuki Yoshioka, Gab Seok Kim, et al. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection[J]. Antioxid Redox Signal, 2011, 14(8):1505–1517. [55] Silvia Manzanero, Tomislav Santro, Thiruma V Arumugam. Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury[J]. Neurochem Int, 2013, 62(5):712–718. [56] Thomas Hudson Sanderson, Christian A Reynolds, Rita Kumar, et al. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol, 2013, 47(1):9–23. [57] Anatoly A Starkov, Gary Fiskum. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state[J]. J Neurochem, 2003, 86(5):1101–1107. [58] Michael Trenker, Roland Malli, Ismene Fertschai, et al. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport[J]. Nat Cell Biol, 2007, 9(4):445–452. [59] Dong Huan-li, Wang Shi-lei, Zhang Zong-wang, et al. The effect of mitochondrial calcium uniporter opener spermine on diazoxide against focal cerebral ischemia—Reperfusion injury in rats[J]. J Stroke Cerebrovasc Dis, 2014, 23(2):303–309. [60] Christos Chinopoulos, Vera Adam-Vizi. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme[J]. FEBS J, 2006, 273(3):433–450 [61] Petr Jezek, Lydie Hlavatá. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism[J]. Int J Biochem Cell Biol, 2005, 37(12):2478–2503. [62] Theodore Kalogeris, Bao Yi-min, Ronald J Korthuis. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2:702–714. [63] Thomas Hudson Sanderson, Christian A Reynolds, Rita Kumar, et al. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol, 2013, 47(1):9–23. [64] Nagendra Yadava, David G Nicholls. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone[J]. J Neurosci, 2007, 27(27):7310–7317. [65] Neil R Sims, Michelle F Anderson. Mitochondrial contributions to tissue damage in stroke[J]. Neurochem Int, 2002, 40(6):511–526. [66] Jaroslava Folbergrová, Zhao Q, Ken-ichiro Katsura, et al. N-tert-butyl-α-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia[J]. Proc Natl Acad Sci USA, 1995, 92(11):5057–5061. [67] Asta Kristine Håberg, Qu Hao-kuan, Mari Hjelstuen, et al. Effect of the pyrrolopyrimidine lipid peroxidation inhibitor U-101033E on neuronal and astrocytic metabolism and infarct volume in rats with transient middle cerebral artery occlusion[J]. Neurochem Int, 2007, 50(7-8):932–940. [68] Anna E Thoren, Stephen C Helps, Michael Nilsson, et al. The metabolism of 14C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats[J]. J Neurochem, 2006, 97(4): 968–978. [69] Yang Chen-dong, Bookyung Ko, Christopher T Hensley, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport[J]. Mol Cell, 2014, 56(3):414–424. [70] Ludmila Belayev, Zhao Wei-zhao, Raul Busto, et al. Transient middle cerebral artery occlusion by intraluminal suture 1. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation[J]. J Cereb Blood Flow Metab, 1997, 17(12): 1266–1280. [71] Neil R Sims, Hakan Muyderman. Mitochondria, oxidative metabolism and cell death in stroke[J]. Biochim Biophys Acta, 2010, 1802(1): 80–91. [72] Green D R. Apoptotic pathways: The roads to ruin[J]. Cell, 1998, 94(6):695–698. [73] Maik Hüttemann, Petr Pecina, Matthew Rainbolt, et al. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis[J]. Mitochondrion, 2011, 11(3):369–381. [74] Andrew P Halestrap, Andrew P Richardson. The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78:129–141. [75] Li Peng, Deepak Nijhawan, Imawati Budihardjo, et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91(4):479–489. [76] Guido K, John R. Mitochondrial control of cell death[J]. Nature, 2000, 6(5):513–519. [77] Garrido C, Galluzzi L, Brunet M, et al. Mechanisms of cytochrome c release from mitochondria[J]. Cell Death Differ, 2006, 13(9):1423–1433 [78] Maureen O Ripple, Michelle Abajian, Roger Springett. Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization[J]. Apoptosis, 2010, 15(5):563–573. [79] Goldstein J C, Cristina Muñoz-Pinedo, Jean-Ehrland Ricci, et al. Cytochrome c is released in a single step during apoptosis[J]. Cell Death Differ, 2005, 12(5):453–462. [80] Guido Kroemer, Bruno Dallaporta, Michele Resche-Rigon. The mitochondrial death/life regulator in apoptosis and necrosis[J]. Annu Rev Physiol, 1998, 60(1): 619–642. [81] Krishnendu Sinha, Joydeep Das, Pabitra Bikash Pal, et al. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis[J]. Arch Toxicol, 2013, 87(7):1157–1180. [82] Hiroki Yoshida, Kong Young-yun, Ritsuko Yoshida, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development[J]. Cell, 1998, 94(6):739–750. [83] Venkata Prasuja Nakka, Anchal Gusain, Suresh L Mehta, et al. Molecular mechanisms of apoptosis in cerebral ischemia: Multiple neuroprotective opportunities[J]. Mol Neurobiol, 2008, 37(1):7–38. [84] Witold Filipowicz, Suvendra N Bhattacharyya, Nahum Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? [J]. Nat Rev Genet, 2008, 9(2):102–114. [85] Victor Ambros. The functions of animal microRNAs[J]. Nature, 2004, 431(7006):350–355. [86] Lee Yoontae, Ahn Chi-young, Han Jin-ju, et al. The nuclear RNase III Drosha initiates microRNA processing[J]. Nature, 2003, 425(6956):415–419. [87] Yoontae Lee, Minju Kim, Han Jin-ju, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J, 2004, 23(20):4051–4060. [88] Tomoko Kawamata, Yukihide Tomari. Making risc[J]. Trends Biochem Sci, 2010, 35(7):368–376. [89] Maria I Almeida, Rui M Reis, George A Calin. MicroRNA history: Discovery, recent applications, and next frontiers[J]. Mutat Res, 2011, 717(1-2):1–8. [90] Eva Várallyay, Jozsef Burgyán, Zoltan Havelda. MicroRNA detection by northern blotting using locked nucleic acid probes[J]. Nat Protoc, 2008, 3(2):190–196. [91] Marc R Friedländer, Chen Wei, Catherine Adamidi, et al. Discovering microRNAs from deep sequencing data using mirdeep[J]. Nat Biotechnol, 2008, 26(4): 407–415. [92] Michela Garofalo, Gerolama Condorelli, Croce C M, et al. MicroRNAs as regulators of death receptors signaling[J]. Cell Death Differ, 2010, 17(2):200–208. [93] Paul Graves, Zeng Yan. Biogenesis of mammalian microRNAs: A global view[J]. Genom Proteom Bioinform, 2012, 10(5):239–245. [94] Lena Smirnova, Anja Grafe, Andrea Seiler, et al. Regulation of miRNA expression during neural cell specification[J]. Eur J Neurosci, 2005, 21(6):1469–1477. [95] Benjamin P Lewis, Christopher B Burge, David P Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1):15–20. [96] Kandiah Jeyaseelan, Kai Ying Lim, Arunmozhiarasi Armugam. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3):959–966. [97] F Gregory Wulczyn, Lena Smirnova, Agnieszka Rybak-Wolf, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification[J]. FASEB J, 2007, 21(2):415–426. [98] Kay Sin Tan, Arunmozhiarasi Armugam, Sugunavathi Sepramaniam, et al. Expression profile of microRNAs in young stroke patients[J]. PLoS One, 2009, 4(11): e7689. [99] Betsy T Kren, Phillip Y P Wong, Aaron Sarver, et al. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis[J]. RNA Biol, 2009, 6(1):65–72. [100] Samarjit Das, Marcella Ferlito, Oliver A Kent, et al. Nuclear miRNA regulates the mitochondrial genome in the heart[J]. Circ Res, 2012, 110(12):1596–1603. [101] Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J]. Oncogene, 2010, 29(30):4362–4368. [102] Shi Qing-li, Gary Gibson. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a[J]. J Neurochem, 2011, 118(3):440–448. [103] Sujatha Venkataraman, Irina Alimova, Fan Rong, et al. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence[J]. PLoS One, 2010, 5(6): e10748. [104] Cha Min-Ji, Jang Jin-Kyung, Onju Ham, et al. MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting camkiidelta[J]. Biochem Biophysic Res Commun, 2013, 435(4):720–726. [105] Wang Jin-li, Wu Min-hao, Wen Jin-sheng, et al. MicroRNA-155 induction by Mycobacterium bovis BCG enhances ROS production through targeting SHIP1[J]. Mol Immunol, 2014, 62(1):29–36. [106] Jennifer Sacco, Khosrow Adeli. MicroRNAs: Emerging roles in lipid and lipoprotein metabolism[J]. Curr Opin Lipidol, 2012, 23(3):220–225. [107] Woochul Chang, Chang Youn Lee, Jun Hee Park, et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J]. J Vet Sci, 2013, 14(1): 69–76. [108] Griffin S, Clark J B, Canevari L. Astrocyte-neurone communication following oxygen-glucose deprivation[J]. J Neurochem, 2005, 95(4):1015–1022. [109] Gao Ping, Irina Tchernyshyov, Tsung-Cheng Chang, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239):762–765. [110] Walter A Baseler, Dharendra Thapa, Rajaganapathi Jagannathan, et al. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart[J]. Am J Physiol Cell Physiol, 2012, 303(12):C1244–C1251. [111] Vousden K H. P53: Death star[J]. Cell, 2000, 103(5):691–694. [112] Angelina V Vaseva, Natalie D Marchenko, Kyungmin Ji, et al. P53 opens the mitochondrial permeability transition pore to trigger necrosis[J]. Cell, 2012, 149(7):1536–1548. [113] Su Wei, Stephanie Hopkins, Nicole K Nesser, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf[J]. J Immunol, 2014, 192(1):358–366. [114] Francesca Forini, Claudia Kusmic, Giuseppina Nicolini, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis[J]. Endocrinology, 2014, 155(11):4581–4590. [115] Zhang Chun-zhi, Zhang Junxia wei, Zhang An-lin, et al. Puma is a novel target of miR-221/222 in human epithelial cancers[J]. Int J Oncol, 2010, 37(6):1621–1626. [116] Li Ruo-tian, Yan Gui-jun, Li Qiao-ling, et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway[J]. PLoS One, 2012, 7(9):e44907. [117] Ouyang Yi-bing, Xu Li-jun, Lu Yu, et al. Astrocyte-enriched miR-29a targets puma and reduces neuronal vulnerability to forebrain ischemia[J]. Glia, 2013, 61(11):1784–1794. [118] Reema Roshan, Shruti Shridhar, Mayuresh A Sarangdhar, et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice[J]. RNA, 2014, 20(8):1287–1297. [119] Saeideh Jafarinejad-Farsangi, Ali Farazmand, Mahdi Mahmoudi, et al. MicroRNA-29a induces apoptosis via increasing the Bax: BCL-2 ratio in dermal fibroblasts of patients with systemic sclerosis[J]. Autoimmunity, 2015, 48(6):369–378. [120] Jeong-Mi Moon, Xu Li-xun, Rona G Giffard. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss[J]. J Cereb Blood Flow Metab, 2013, 33(12):1976–1982. [121] Shang Jing-li, Yang Fu, Wang Yu-zhao, et al. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through Apaf-1/Caspase-9 apoptotic pathway in colorectal cancer cells[J]. J Cell Biochem, 2014, 115(4):772–784. [122] Huang Li-gang, Li Jin-pin, Pang Xiao-min, et al. MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both Birc2 and Bak1 in rat brain after stroke[J]. CNS Neurosci Ther, 2015, 21(6): 496–503. |
[1] | WEI Zhen-zhen,FANG Xiao-yan,BAI Ming,MIAO Ming-san. Research Progress in Treatment of Cerebral Ischemia Injury Based on Astrocytes [J]. Acta Neuropharmacologica, 2019, 9(1): 36-43. |
[2] | XING Yuan,ZHANG Nan,ZHANG Wei,REN Lei-ming. Neurotoxicity and Prevention of Local Anesthetics in Central Nervous System [J]. Acta Neuropharmacologica, 2018, 8(3): 15-. |
[3] | ZHANG Nan,XIONG Wen-wen,XING Yuan,ZHANG Wei. Culture Method of Rat Fetal Hippocampal Neurons and Astrocytes [J]. Acta Neuropharmacologica, 2017, 7(1): 24-28. |
[4] | LING Peng,LI Yue-yue,QIAN Heng,LIAN Xiao-yuan. Regulation of Excitatory Amino Acid Neurotransmitter by Astrocytes and Its Impact to Epilepsy [J]. Acta Neuropharmacologica, 2015, 5(2): 46-53. |
[5] | WANG Shu-lin, AN Fang. Review of the Effect of Chinese Traditional Medicine on Mechanism of Cerebral Ischemia Reperfusion Injury [J]. Acta Neuropharmacologica, 2014, 4(3): 39-48. |
[6] | FAN Yue,YAN Yong,SHANG Ya-zhen. A Method of Separating and Culturing Astrocytes from Rat Cerebral Cortex [J]. Acta Neuropharmacologica, 2011, 1(6): 22-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||