Previous Articles Next Articles
XING Yuan,ZHANG Nan,ZHANG Wei,REN Lei-ming
Online:
2018-06-26
Published:
2018-11-16
Contact:
张炜,女,教授;研究方向:神经药理学;E-mail:weizhang@hebmu.edu.cn
任雷鸣,男,教授;研究方向:神经药理学、心血管药理学;E-mail:ren-leiming@263.net
About author:
邢媛,女,河北医科大学药理学博士研究生
Supported by:
CLC Number:
XING Yuan,ZHANG Nan,ZHANG Wei,REN Lei-ming. Neurotoxicity and Prevention of Local Anesthetics in Central Nervous System[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2018.03.003.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2018.03.003
[1] Olch P D. William S. Halsted and local anesthesia contributions and complications [J]. Anesthesiology, 1975, 42(4): 479-486. [2] Jesus Calatayud, Angel González A. History of the development and evolution of local anesthesia since the coca leaf [J]. Anesthesiology, 2003, 98(6): 1503-1508. [3] 杨宝峰. 药理学 [M]. 北京: 人民卫生出版社, 2013: 112-113. [4] Daniel E Becker, Kenneth L Reed. Local anesthetics: review of pharmacological considerations [J]. Anesth Prog, 2012, 59(2): 90-101; quiz 102-103. [5] Jean-Xavier Mazoit, Bernard J Dalens. Pharmacokinetics of local anaesthetics in infants and children [J]. Clin Pharmacokinet, 2004, 43(1): 17-32. [6] Catterall W A. Voltage-gated sodium channels: structure, function, and pathophysiology [J]. J Physiol, 2013, 590(11): 564-569. [7] Philipp Lirk, Susanne Picardi, Markus W Hollmann. Local anaesthetics: 10 essentials [J]. Eur J Anaesthesiol, 2014, 31(11): 575-585. [8] John M Nusstein, Mike Beck. Effectiveness of 20% benzocaine as a topical anesthetic for intraoral injections [J]. Anesth Prog, 2003, 50(4): 159-163. [9] Jian Payandeh, Todd Scheuer, Ning Zheng, et al. The crystal structure of a voltage-gated sodium channel [J]. Nature, 2011, 475(7356): 353-358. [10] Alexander Binshtok, Bruce P Bean, Clifford J Woolf. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers [J]. Nature, 2007, 449(7162): 607-610. [11] Huang J H, Thalhammer J G, Raymond S A, et al. Susceptibility to lidocaine of impulses in different somatosensory afferent fibers of rat sciatic nerve [J]. J Pharmacol Exp Ther, 1997, 282(2): 802-811. [12] Sally N Lawson. Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres [J]. Exp Physiol, 2002, 87(2): 239-244. [13] Anna Mizzi, Thanh Tran, Devanand Mangar, et al. Amiodarone supplants lidocaine in ACLS and CPR protocols [J]. Anesthesiol Clin, 2011, 29(3): 535-545. [14] Cynthia L Darlington, Paul F Smith. Drug treatments for tinnitus [J]. Prog Brain Res, 2007, 166(1): 249-262. [15] Wolfgang Koppert, Marc Weigand, Reinhard Sittl, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery [J]. Anesth Analg, 2004, 98(4): 1050-1055, table of contents. [16] Carsten Gronwald, Vladimir Vegh, Markus W Hollmann, et al. The inhibitory potency of local anesthetics on NMDA receptor signalling depends on their structural features [J]. Eur J Pharmacol, 2012, 674(1): 13-19. [17] Hollmann M W, Durieux M E. Local anesthetics and the inflammatory response: a new therapeutic indication? [J]. Anesthesiology, 2000, 93(3): 858-875. [18] Susanne Herroeder, Sabine Pecher, Marianne E Schonherr, et al. Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial [J]. Ann Surg, 2007, 246(2): 192-200. [19] Markus W Hollmann, Susanne Picardi, Katrin S Kurz, et al. Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics [J]. Anesthesiology, 2004, 100(4): 852-860. [20] Idil Çavu?, Jonathan Romanyshyn, Jeremy T Kennard, et al. Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: Microdialysis study of 79 patients at the yale epilepsy surgery program [J]. Ann Neurol, 2016, 80(1): 35-45. [21] Kandel E R, Schwartz J H, Jessell T M, et al. Principles of Neural Science [M]. New York: McGraw Hill Publishing, 2000. [22] Pelvig D P, Pakkenberg H, Stark A K, et al. Neocortical glial cell numbers in human brains [J]. Neurobiol Aging, 2008, 29(11): 1754-1762. [23] Frederico Augusto Casarsa de Azevedo, Ludmila R B Carvalho, Lea Tenenholz Grinberg, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol, 2009, 513(5): 532-541. [24] Herculanohouzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, Plasticity and Evolution [J]. PLoS One, 2011, 6(3): e17514. [25] Chet C Sherwood, Cheryl D Stimpson, Mary Ann Raghanti, et al. Evolution of increased glia-neuron ratios in the human frontal cortex [J]. Proc Natl Acad Sci U S A, 2006, 103(37): 13606-13611. [26] Maiken Nedergaard, Bruce Ransom, Steven A Goldman. New roles for astrocytes: redefining the functional architecture of the brain [J]. Trends Neurosci, 2003, 26(10): 523-530. [27] Grazyna Rajkowska, Jose J Miguel-Hidalgo. Gliogenesis and glial pathology in depression [J]. CNS Neurol Disord Drug Targets, 2007, 6(3): 219-233. [28] Nancy Ann Oberheim, Takahiro Takano, Han Xiao-ning, et al. Uniquely hominid features of adult human astrocytes [J]. J Neurosci, 2009, 29(10): 3276-3287. [29] Alfredo Pereira Jr, Fabio Augusto Furlan. Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity [J]. Prog Neurobiol, 2010, 92(3): 405-420. [30] Maha Elsayed, Pierre J Magistretti. A new outlook on mental illnesses: glial involvement beyond the glue [J]. Front Cell Neurosci, 2015, 9:468. [31] Peter Somogyi, Nomi Eshhar, Vivian I Teichberg, et al. Subcellular localization of a putative kainate receptor in Bergmann glial cells using a monoclonal antibody in the chick and fish cerebellar cortex [J]. Neuroscience, 1990, 35(1): 9-30. [32] Teichberg V I. Glial glutamate receptors: likely actors in brain signaling [J]. FASEB J, 1991, 5(15): 3086-3091. [33] Alfonso Araque, Vladimir Parpura, Rita P Sanzgiri, et al. Tripartite synapses: glia, the unacknowledged partner [J]. Trends Neurosci, 1999, 22(5): 208-215. [34] Alfonso Araque, Giorgio Carmignoto, Philip G Haydon, et al. Gliotransmitters travel in time and space [J]. Neuron, 2014, 81(4): 728-739. [35] Gasser H. Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers [J]. Am J Physiol, 1939, 127(2): 393-414. [36] Albert J Aguayo, Garth McLenehan Bray, Suzanne C Perkins. Axon-Schwann cell relationships in neuropathies of mutant mice [J]. Ann N Y Acad Sci, 1979, 317(1): 512-531. [37] Windebank A J, Wood P, Bunge R P, et al. Myelination determines the caliber of dorsal root ganglion neurons in culture [J]. J Neurosci, 1985, 5(6): 1563-1569. [38] Sylvie M De Waegh, Virginia M Y Lee, Scott T Brady. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells [J]. Cell, 1992, 68(3): 451-463. [39] Kristjan R Jessen, Rhona Mirsky, Alison C Lloyd. Schwann cells: development and role in nerve repair [J]. Cold Spring Harb Perspect Biol, 2015, 7(7): a020487. [40] Menachem Hanani. Satellite glial cells in sensory ganglia: from form to function [J]. Brain Res Brain Res Rev, 2005, 48(3): 457-476. [41] Menachem Hanani. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function [J]. Brain Res Rev, 2010, 64(2): 304-327. [42] Rachel E Ventura, James E Goldman. Telencephalic oligodendrocytes battle it out [J]. Nat Neurosci, 2006, 9(2): 153-154. [43] Graeber M B. Glial cells: microglia during normal brain aging [M]. Encyclopedia of Neuroscience, 2009, 761–763. [44] Philip G Haydon. GLIA: listening and talking to the synapse [J]. Nat Rev Neurosci, 2001, 2(3): 185-193. [45] Allaman I, Magistretti PJ. Chapter 12-brain energy metabolism [M]. Fundamental Neuroscience . 4th ed, 2013, 261-284. [46] Pierre J Magistretti, Igor Allaman. A cellular perspective on brain energy metabolism and functional imaging [J]. Neuron, 2015, 86(4): 883-901. [47] Walz W, Mukerji S. Lactate release from cultured astrocytes and neurons: a comparison [J]. Glia, 1988, 1(6): 366-370. [48] Luc Pellerin, Pierre J Magistretti. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization [J]. Proc Natl Acad Sci U S A, 1994, 91(22): 10625-10629. [49] Julien Chuquet, Pascale Quilichini, Esther A Nimchinsky, et al. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex [J]. J Neurosci, 2010, 30(45): 15298-15303. [50] Magistretti P J, John H Morrison, Shoemaker W J, et al. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism [J]. Proc Natl Acad Sci U S A, 1981, 78(10): 6535-6539. [51] Olivier Sorg, Pierre J Magistretti. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes [J]. Brain Res, 1991, 563(1-2): 227-233. [52] Rachel E Ventura, Kristen M Harris. Three-dimensional relationships between hippocampal synapses and astrocytes [J]. J Neurosci, 1999, 19(16): 6897. [53] Norman Wale, Leonard C Jenkins. Site of action of diazepam in the prevention of lidocaine induced seizure activity in cats [J]. Can Anaesth Soc J, 1973, 20(2): 146-152. [54] James T Porter, Ken D Mccarthy. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals [J]. J Neurosci, 1996, 16(16): 5073-5081. [55] Pasti L, Volterra A, Pozzan T, et al. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ [J]. J Neurosci, 1997, 17(20): 7817-7830. [56] Michael J Schell, Mark E Molliver, Solomon H Snyder. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release [J]. Proc Natl Acad Sci U S A, 1995, 92(9): 3948-3952. [57] Jun-ichi Miyazaki, shigetada Nakanishi, Hisato Jingami. Expression and characterization of a glycine-binding fragment of the N-methyl-D-aspartate receptor subunit NR1 [J]. Biochem J, 1999, 340 ( Pt 3): 687-692. [58] Herman Wolosker, Kevin N Sheth, Masaaki Takahashi, et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine [J]. Proc Natl Acad Sci U S A, 1999, 96(2): 721-725. [59] Wolosker H, Seth Blackshaw, Snyder S H. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission [J]. Proc Natl Acad Sci USA, 1999, 96(23): 13409-13414. [60] Andrea Volterra, Jacopo Meldolesi. Astrocytes, from brain glue to communication elements: the revolution continues [J]. Nat Rev Neurosci, 2005, 6(8): 626-640. [61] Chiara Cervetto, Daniela Frattaroli, Arianna Venturini, et al. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes [J]. Neuropharmacology, 2015, 99:396-407. [62] Andrea Volterra, Nicolas Liaudet, Iaroslav Savtchouk. Astrocyte Ca2+ signalling: an unexpected complexity [J]. Nat Rev Neurosci, 2014, 15(5): 327-335. [63] M De Pitta, Brunel N, Volterra A. Astrocytes: Orchestrating synaptic plasticity? [J]. Neuroscience, 2016, 323:43-61. [64] Maiken Nedergaard, Alexei Verkhratsky. Artifact Versus Reality-How Astrocytes Contribute to Synaptic Events [J]. Glia, 2012, 60(4): 289-298. [65] Jeffrey D Rothstein, Margaret Dykes-Hoberg, Carlos A Pardo, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate [J]. Neuron, 1996, 16(3): 675-686. [66] Jessen K R. Glial cells [J]. Int J Biochem Cell Biol, 2004, 36(10): 1861-1867. [67] Courtney K R. Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics [J]. J Pharmacol Exp Ther, 1980, 213(1): 114-119. [68] Masahiro Sugimoto, Ichiro Uchida, Takashi Mashimo. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-D-aspartate (NMDA) receptors [J]. Br J Pharmacol, 2003, 138(5): 876-882. [69] Nishizawa N, Shirasaki T, Nakao S, et al. The inhibition of the N-methyl-D-aspartate receptor channel by local anesthetics in mouse CA1 pyramidal neurons [J]. Anesth Analg, 2002, 94(2): 325-330. [70] Tzu-Yu Lin, Chih-Yang Chung, Lu Cheng-wei, et al. Local anesthetics inhibit glutamate release from rat cerebral cortex synaptosomes [J]. Synapse, 2013, 67(9): 568-579. [71] Hanson E, Armbruster M, Cantu D, et al. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex [J]. Glia, 2015, 63(10): 1784-1796. [72] Khaled Moussawi, Arthur C Riegel, Satish S Nair, et al. Extracellular Glutamate: Functional Compartments Operate in Different Concentration Ranges [J]. Front Syst Neurosci, 2011, 5: 94. [73] John D Clements,Robin A J Lester, Tong Gang, et al. The time course of glutamate in the synaptic cleft [J]. Science, 1992, 258(5087): 1498-1501. [74] Zhou Y, Danbolt N C. Glutamate as a neurotransmitter in the healthy brain [J]. J Neural Transm, 2014, 121(8): 799-817. [75] Dennis Choi. Ionic dependence of glutamate neurotoxicity [J]. J Neurosci, 1987, 7(2): 369-379. [76] Kohichi Tanaka, Kei Watase, Toshiya Manabe, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1 [J]. Science, 1997, 276(5319): 1699-1702. [77] Christof Grewer, Armanda Gameiro, Zhang Zhou, et al. Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia [J]. IUBMB Life, 2008, 60(9): 609-619. [78] Erin M Rose, Joseph Koo, Jordan E Antflick, et al. Glutamate transporter coupling to Na,K-ATPase [J]. J Neurosci, 2009, 29(25): 8143-8155. [79] Denis Jabaudon, Massimo Scanziani, Beat H Gahwiler, et al. Acute decrease in net glutamate uptake during energy deprivation [J]. Proc Natl Acad Sci U S A, 2000, 97(10): 5610-5615. [80] Szatkowski M, Barbour B, Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake [J]. Nature, 1990, 348(6300): 443-446. [81] Brian Billups, David Attwell. Modulation of non-vesicular glutamate release by pH [J]. Nature, 1996, 379(6561): 171-174. [82] Michiko Takahashi, Brian Billups, David Rossi, et al. The role of glutamate transporters in glutamate homeostasis in the brain [J]. J Exp Biol, 1997, 200(Pt 2): 401-409. [83] Phillis J W, Ren J, O'regan M H. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-threo-beta-benzyloxyaspartate [J]. Brain Res, 2000, 880(1-2): 105-112. [84] 虞希冲, 朱桐君. 谷氨酸转运体、谷氨酸/胱氨酸转运体与谷氨酸神经细胞毒作用 [J]. 中国临床药理学与治疗学, 2003, 8(5): 490-493. [85] Auroy Y, Narchi P, Antoine Messiah A, et al. Serious complications related to regional anesthesia: results of a prospective survey in France [J]. Anesthesiology, 1997, 87(3): 479-486. [86] William Irwin, Eric Fontaine, Laura Agnolucci, et al. Bupivacaine myotoxicity is mediated by mitochondria [J]. J Biol Chem, 2002, 277(14): 12221. [87] Christopher L Wu, Sean M Berenholtz, Peter J Pronovost, et al. Systematic review and analysis of postdischarge symptoms after outpatient surgery [J]. Anesthesiology, 2002, 96(4): 994-1003. [88] Julia E Pollock. Neurotoxicity of intrathecal local anaesthetics and transient neurological symptoms [J]. Best Pract Res Clin Anaesthesiol, 2003, 17(3): 471-484. [89] 刘万军, 崔学文, 马进峰. 马尾综合征影响治疗效果因素的研究 [J]. 中国矫形外科杂志, 2001, 8(2): 115-117. [90] Michael Egon Johnson. Potential neurotoxicity of spinal anesthesia with lidocaine [J]. Mayo Clin Proc, 2000, 75(9): 921-932. [91] 朱森. 椎管内麻醉后暂时性神经病学综合征疗效分析 [J]. 中国药物与临床, 2016, 07(9): 84-85. [92] 徐旭仲, 金胜威, 寿红艳, 等. 罗哌卡因脊麻后暂时性神经症状两例 [J]. 中华麻醉学杂志, 2001, 21(4):16. [93] Julia E Pollock. Transient neurologic symptoms: etiology, risk factors, and management [J]. Reg Anesth Pain Med, 2002, 27(6): 581-586. [94] Michael F Mulroy. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures [J]. Reg Anesth Pain Med, 2002, 27(6): 556-561. [95] Kenichi Sekimoto, Masaru Tobe, Shigeru Saito. Local anesthetic toxicity: acute and chronic management [J]. Acute Med Surg, 2017, 4(2): 152-160. [96] Richard Brull, Colin J L Mccartney, Vincent W S Chan, et al. Neurological complications after regional anesthesia: contemporary estimates of risk [J]. Anesth Analg, 2007, 104(4): 965-974. [97] Michael J Barrington, Roman Kluger. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade [J]. Reg Anesth Pain Med, 2013, 38(4): 289-299. [98] Brian Sites, Andreas H Taenzer, Michael D Herrick, et al. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: an analysis from a prospective clinical registry [J]. Reg Anesth Pain Med, 2012, 37(5): 478-482. [99] Knudsen K, M Beckman Suurküla, S Blomberg, et al. Central nervous and cardiovascular effects of iv infusions of ropivacaine, bupivacaine and placebo in volunteers [J]. Br J Anaesth, 1997, 78(5): 507-514. [100] Selander D, Brattsand R, Lundborg G, et al. Local anesthetics: importance of mode of application, concentration and adrenaline for the appearance of nerve lesions: an experimental study of axonal degeneration and barrier damage after intrafascicular injection or topical application of bupivacaine (Marcah) [J]. Acta anaesthesiol scand, 1979, 23(2): 127-136. [101] Mark Verlinde, Markus W Hollmann, Markus F Stevens, et al. Local anesthetic-induced neurotoxicity [J]. Int J Mol Sci, 2016, 17(3): 339. [102] Robert Werdehausen, Seyed mahdi Fazeli, Braun S, et al. Apoptosis induction by different local anaesthetics in a neuroblastoma cell line [J]. Br J Anaesth, 2009, 103(5): 711-718. [103] Robert Werdehausen, Sebastian Braun, Frank Essmann, et al. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling [J]. Anesthesiology, 2007, 107(1): 136-143. [104] Johnson M E, Uhl C B, Spittler K H, et al. Mitochondrial injury and caspase activation by the local anesthetic lidocaine [J]. Anesthesiology, 2004, 101(5): 1184-1194. [105] Xing Yuan, Zhang Nan, Zhang Wei, et al. Bupivacaine indirectly potentiates glutamate-induced intracellular calcium signaling in rat hippocampal neurons by impairing mitochondrial function in cocultured astrocytes [J]. Anesthesiology, 2018, 128(3): 539-554. [106] Markus W Hollmann, Danja Strumper, Susanne Herroeder, et al. Receptors, G proteins, and their interactions [J]. Anesthesiology, 2005, 103(5): 1066-1078. [107] Markus W Hollmann, Cosmo A Difazio, Marcel E Durieux. Ca-signaling G-protein-coupled receptors: A new site of local anesthetic action? [J]. Reg Anesth Pain Med, 2001, 26(6): 565-571. [108] Strichartz G. Protracted relief of experimental neuropathic pain by systemic local anesthetics. How, where, and when [J]. Anesthesiology, 1995, 83(4): 654-655. [109] Koppert W, Zeck S, Sittl R, et al. Low-dose lidocaine suppresses experimentally induced hyperalgesia in humans [J]. Anesthesiology, 1998, 89(6): 1345-1353. [110] Akifumi Kanai, Hiromi Hiruma, Takashi Katakura, et al. Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons [J]. Anesthesiology, 2001, 95(3): 675-680. [111] Hollmann M W, Kathrin Wieczorek, Berger A, et al. Local anesthetic inhibition of g protein-coupled receptor signaling by interference with gαq protein function [J]. Mol Pharmacol, 2001, 59(2): 294-301. [112] Norihito Kitagawa, Mayuko Oda, Tadahide Totoki. Possible mechanism of irreversible nerve injury caused by local anesthetics: detergent properties of local anesthetics and membrane disruption [J]. Anesthesiology, 2004, 100(4): 962-967. [113] Michael Egon Johnson, J Armando Saenz, Assir Daniel Dasilva, et al. Effect of local anesthetic on neuronal cytoplasmic calcium and plasma membrane lysis (necrosis) in a cell culture model [J]. Anesthesiology, 2002, 97(6): 1466-1476. [114] Michael S Gold, David B Reichling, Karl F Hampl, et al. Lidocaine toxicity in primary afferent neurons from the rat [J]. J Pharmacol Exp Ther, 1998, 285(2): 413-421. [115] Johnson M E, Gores G J, Uhl C B, et al. Cytosolic free calcium and cell death during metabolic inhibition in a neuronal cell line [J]. J Neurosci, 1994, 14(7): 4040-4049. [116] Arai Y, Kondo T, Tanabe K, et al. Enhancement of hyperthermia-induced apoptosis by local anesthetics on human histiocytic lymphoma U937 cells [J]. J Biol Chem, 2002, 277(21): 18986-18993. [117] Toshiharu Kasaba, Shin Onizuka, Masatoshi Kashiwada, et al. Increase in intracellular Ca2+ concentration is not the only cause of lidocaine-induced cell damage in the cultured neurons of Lymnaea stagnalis [J]. J Anesth, 2006, 20(3): 196-201. [118] Su Dian-san, Gu Yang, Wang Zhen-hong, et al. Lidocaine attenuates proinflammatory cytokine production induced by extracellular adenosine triphosphate in cultured rat microglia [J]. Anesth Analg, 2010, 111(3): 768-774. [119] Rosalia Perez-Castro, Sohin Patel, Zayra Viviana Garavito-Aguilar, et al. Cytotoxicity of local anesthetics in human neuronal cells [J]. Anesth Analg, 2009, 108(3): 997-1007. [120] Xu Fang, Zhang Jin, Esperanza Recio-Pinto, et al. Halothane and isoflurane augment depolarization-induced cytosolic CA2+ transients and attenuate carbachol-stimulated CA2+ transients [J]. Anesthesiology, 2000, 92(6): 1746-1756. [121] Zayra V Garavito-Aguilar, Esperanza Recio-Pinto, Alexandra V Corrales, et al. Differential thapsigargin-sensitivities and interaction of Ca2+ stores in human SH-SY5Y neuroblastoma cells [J]. Brain Res, 2004, 1011(2): 177-186. [122] Sattler R, Tymianski M, Feyaz I, et al. Voltage-sensitive calcium channels mediate calcium entry into cultured mammalian sympathetic neurons following neurite transection [J]. Brain Res, 1996, 719(1-2): 239-246. [123] Luis Pardo, Thomas J J Blanck, Esperanza Recio-Pinto. The neuronal lipid membrane permeability was markedly increased by bupivacaine and mildly affected by lidocaine and ropivacaine [J]. Eur J Pharmacol, 2002, 455(2-3): 81-90. [124] Menachem Sadeh, Krzysztof Czyewski, Lawrence Z Stern. Chronic myopathy induced by repeated bupivacaine injections [J]. J Neurol Sci, 1985, 67(2): 229-238. [125] Bradley D Bergman, James R Hebl, Jay Kent, et al. Neurologic complications of 405 consecutive continuous axillary catheters [J]. Anesth Analg, 2003, 96(1): 247-252, table of contents. [126] Leanne Groban. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model [J]. Reg Anesth Pain Med, 2003, 28(1): 3-11. [127] Toshiharu Kasaba, Shin Onizuka, Mayumi Takasaki. Procaine and mepivacaine have less toxicity in vitro than other clinically used local anesthetics [J]. Anesth Analg, 2003, 97(1): 85-90. [128] Shinichi Sakura, Andrew W Bollen, Ricardo Ciriales, et al. Local anesthetic neurotoxicity does not result from blockade of voltage-gated sodium channels [J]. Anesth Analg, 1995, 81(2): 338-346. [129] Kanai Yuko, Katsuki Hiroshi, Takasaki Mayumi. Lidocaine disrupts axonal membrane of rat sciatic nerve in vitro [J]. Anesth Analg, 2000, 91(4): 944-948. [130] Miller R J. The control of neuronal Ca2+ homeostasis [J]. Progr Neurobiol, 1991, 37(3): 255. [131] John F Butterworth, Gary R Strichartz. Molecular mechanisms of local anesthesia: a review [J]. Anesthesiology, 1990, 72(4): 711. [132] Mark Haigney, Lakatta E G, Stern M D, et al. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading [J]. Circulation, 1994, 90(1): 391-399. [133] Tetsuya Kai, Junji Nishimura, Sei Kobayashi, et al. Effects of lidocaine on intracellular Ca2+ and tension in airway smooth muscle [J]. Anesthesiology, 1993, 78(5): 954-965. [134] Wang Xiang-bing, Noriyuki Sato, Monte A Greer. Lidocaine inhibits prolactin secretion in GH4C1 cells by blocking calcium influx [J]. Mol Cell Endocrinol, 1992, 87(1-3): 157-165. [135] Siesjo B K, Memezawa H, Smith M L. Neurocytotoxicity: pharmacological implications [J]. Fundam Clin Pharmacol, 1991, 5(9): 755-767. [136] Hartley D M, Kurth M C, Bjerkness L, et al. Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration [J]. J Neurosci, 1993, 13(5): 1993-2000. [137] Shun-suke Takahashi. Local anaesthetic bupivacaine alters function of sarcoplasmic reticulum and sarcolemmal vesicles from rabbit masseter muscle [J]. Pharmacol Toxicol, 1994, 75(3-4): 119-128. [138] Howard Kutchai, James E Mahaney, Lisa M Geddis, et al. Hexanol and lidocaine affect the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum [J]. Biochemistry, 1994, 33(45): 13208-13222. [139] Varda Shoshan-Barmatz, Sigalit Zchut. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum [J]. J Membr Biol, 1993, 133(2): 171-181. [140] Abdulrahman A Almotrefi, Nduna Dzimiri. The effect of modifying potassium concentration on the inhibition of myocardial Na(+)-K(+)-ATPase by two class IB antiarrhythmic drugs: lidocaine and tocainide [J]. Gen Pharmacol, 1991, 22(6): 1097-1101. [141] Myung H Kim-Lee, Bradford T Stokes, John S Mcdonald. Procaine, lidocaine, and hypothermia inhibit calcium paradox in glial cells [J]. Anesth Analg, 1994, 79(4): 728-733. [142] Daniel L Alkon, Thomas J Nelson, Zhao Wei-qin, et al. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade [J]. Trends Neurosci, 1998, 21(12): 529-537. [143] Friederich P, Schmitz T P. Lidocaine-induced cell death in a human model of neuronal apoptosis [J]. Eur J Anaesthesiol, 2002, 19(8): 564-570. [144] Philipp Lirk, Ingrid Haller, Robert R Myers, et al. Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo [J]. Anesthesiology, 2006, 104(6): 1266-1273. [145] Akira Unami, Yasuo Shinohara, Tomokazu Ichikawa, et al. Biochemical and microarray analyses of bupivacaine-induced apoptosis [J]. J Toxicol Sci, 2003, 28(2): 77-94. [146] Schönfeld P, Sztark F, Slimani M, et al. Is bupivacaine a decoupler, a protonophore or a proton-leak-inducer? [J]. Febs Letters, 1992, 304(2-3): 273. [147] Grouselle M, Tueux O, Philippe Dabadie, et al. Effect of local anaesthetics on mitochondrial membrane potential in living cells [J]. Biochem J, 1990, 271(1): 269-272. [148] Keith D Garlid, R A Nakashima. Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs [J]. J Biol Chem, 1983, 258(13): 7974-7980. [149] Grant R L, Acosta D Jr. A digitized fluorescence imaging study on the effects of local anesthetics on cytosolic calcium and mitochondrial membrane potential in cultured rabbit corneal epithelial cells [J]. Toxicol Appl Pharmacol, 1994, 129(1): 23-35. [150] Hiroshi Terada, Shima O, Yoshida K, et al. Effects of the local anesthetic bupivacaine on oxidative phosphorylation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions [J]. J Biol Chem, 1990, 265(14): 7837-7842. [151] Francois Sztark, Monique Malgat, Philippe Dabadie, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics [J]. Anesthesiology, 1998, 88(5): 1340-1349. [152] Aristide Floridi, Barbieri R, Pulselli R, et al. Effect of the local anesthetic bupivacaine on the energy metabolism of Ehrlich ascites tumor cells [J]. Oncol Res, 1994, 6(12): 593. [153] Aristide Floridi, Monica Di Padova, Rosaria Barbieri, et al. Effect of local anesthetic ropivacaine on isolated rat liver mitochondria [J]. Biochem Pharmacol, 1999, 58(6): 1009-1016. [154] Lee H T, Xu H, Siegel C D, et al. Local anesthetics induce human renal cell apoptosis [J]. Am J Nephrol, 2003, 23(3): 129-139. [155] Yoichiro Kamiya, Kazumasa Ohta, Yuzuru Kaneko. Lidocaine-induced apoptosis and necrosis in U937 cells depending on its dosage [J]. Biomed Res, 2005, 26(6): 231-239. [156] Martin R Sprick, Eva Rieser, Heiko Stahl, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8 [J]. Embo J, 2002, 21(17): 4520-4530. [157] Shida Yousefi, Sebastian Conus, Hans-Uwe Símon. Cross-talk between death and survival pathways [J]. Cell Death Differ, 2003, 10(8): 861-863. [158] Virginie Lacronique, Alexandre Mignon, Monique Fabre, et al. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice [J]. Nat Med, 1996, 2(1): 80-86. [159] Pothana Saikumar, Margarita Mikhailova, Sri Pandeswara. Regulation of caspase-9 activity by differential binding to the apoptosome complex [J]. Front Biosci, 2007, 12(9): 3343-3354. [160] Suzanne Cory, Jerry M Adams. The Bcl2 family: regulators of the cellular life-or-death switch [J]. Nat Rev Cancer, 2002, 2(9): 647-656. [161] Lisa V Doan, Olga Eydlin, Boris Piskoun, et al. Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro [J]. Anesthesiology, 2014, 120(1): 50-61. [162] Wen Xian-jie, Xu Shi-yuan, Liu Hong-zhen, et al. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells [J]. PLoS One, 2013, 8(5): e62942. [163] Misako Harato, Huang Lei, Fumio Kondo, et al. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells [J]. BMC Neurosci, 2012, 13(1): 149. [164] Park C J, Park S A, Yoon T G, et al. Bupivacaine induces apoptosis via ROS in the Schwann cell line [J]. J Dent Res, 2005, 84(9): 852-857. [165] Yumiko Nishimura, Aimi Kanada, Jun-ya Yamaguchi, et al. Cytometric analysis of lidocaine-induced cytotoxicity: A model experiment using rat thymocytes [J]. Toxicology, 2006, 218(1): 48-57. [166] H Thomas Lee, Igor Krichevsky, Xu Hua, et al. Local anesthetics worsen renal function after ischemia-reperfusion injury in rats [J]. Am J Physiol Renal Physiol, 2004, 286(1): F111-119. [167] Brad Chazotte, Garret Vanderkooi. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics [J]. Biochim Biophys Acta, 1981, 636(2): 153-161. [168] Brad Chazotte, Garret Vanderkooi, Derek Chignell. Further studies on F1-ATPase inhibition by local anesthetics [J]. Biochim Biophys Acta, 1982, 680(3): 310-316. [169] Dabadie P, Bendriss P, Erny P, et al. Uncoupling effects of local anesthetics on rat liver mitochondria [J]. FEBS Lett, 1987, 226(1): 77-82. [170] Pieluigi Nicotera, Maria Ankarcrona, Emanuela Bonfoco, et al. Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress [J]. Adv Neurol, 1997, 72(72): 95-101. [171] Guido Kroemer, John C Reed JC. Mitochondrial control of cell death [J]. Nat Med, 2000, 6(5): 513-519. [172] Michael E Johnson, Cindy B Uhl. Low dose lidocaine causes neuronal injury and apoptosis [J]. Anesthesiology, 2001, 95:A985. [173] Emmanuel Boselli, Frederic Duflo, Richard Debon, et al. The induction of apoptosis by local anesthetics: a comparison between lidocaine and ropivacaine [J]. Anesth Analg, 2003, 96(3): 755-756. [174] Jerry M Adams. Ways of dying: multiple pathways to apoptosis [J]. Genes Dev, 2003, 17(20): 2481-2495. [175] Naoufal Zamzami, Guido Kroemer. The mitochondrion in apoptosis: how Pandora's boxopens [J]. Nat Rev Mol Cell Biol, 2001, 2(1): 67-71. [176] Josef M Penninger, Guido Kroemer. Mitochondria, AIF and caspases: rivaling for cell death execution [J]. Nat Cell Biol, 2003, 5(2): 97-99. [177] Jean-Claude Martinou, Douglas R Green. Breaking the mitochondrial barrier [J]. Nat Rev Mol Cell Biol, 2001, 2(1): 63-67. [178] Donald D Newmeyer, Shelagh Ferguson-Miller. Mitochondria: releasing power for life and unleashing the machineries of death [J]. Cell, 2003, 112(4): 481-490. [179] Andre Van Zundert, Rene J E Grouls, Hendrikus H Korsten, et al. Spinal anesthesia. Volume or concentration--what matters? [J]. Reg Anesth, 1996, 21(2): 112-118. [180] Paul L Anderson, James R Bamburg. Effects of local anesthetics on nerve growth in culture [J]. Dev Neurosci, 1981, 4(4): 273-290. [181] Wilder R T, Berde C B, Griggs C T, et al. Chronic exposure to lidocaine does not alter flux through sodium channels in cultured neuronal cells [J]. Reg Anesth, 1993, 18(5): 283-289. [182] Hiromi Hiruma, Maruyama H, Simada Z B, et al. Lidocaine inhibits neurite growth in mouse dorsal root ganglion cells in culture [J]. Acta Neurobiol Exp (Wars), 1999, 59(4): 323-327. [183] Akifumi Kanai, Hiromi Hiruma, Takashi Katakura, et al. Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons [J]. Anesthesiology, 2001, 95(3): 675-680. [184] Shigeru Saito, Inas Radwan, Hideaki Obata, et al. Direct neurotoxicity of tetracaine on growth cones and neurites of growing neurons in vitro [J]. Anesthesiology, 2001, 95(3): 726-733. [185] Inas A Radwan, Shigeru Saito, Fumio Goto. The neurotoxicity of local anesthetics on growing neurons: a comparative study of lidocaine, bupivacaine, mepivacaine, and ropivacaine [J]. Anesth Analg, 2002, 94(2): 319-324. [186] Sun X, Keith D Garlid. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes [J]. J Biol Chem, 1992, 267(27): 19147. [187] Yoshihide Tsujimoto, Shigeomi Shimizu. Role of the mitochondrial membrane permeability transition in cell death [J]. Apoptosis, 2007, 12(5): 835-840. [188] Zhu Yuan, Pritam Ghosh, Patrick Charnay, et al. Neurofibromas in NF1: Schwann cell origin and role of tumor environment [J]. Science, 2002, 296(5569): 920-922. [189] Lucio Annunziato, Salvatore Amoroso, Anna Pannaccione, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions [J]. Toxicol Lett, 2003, 139(2-3): 125-133. [190] Knight Z A, Shokat K M. Chemically targeting the PI3K family [J]. Biochem Soc Trans, 2007, 35(Pt 2): 245-249. [191] Hyunju Chung, Sanghee Seo, Minho Moon, et al. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells [J]. J Endocrinol, 2008, 198(3): 511-521. [192] Venkata Ramesh Dasari, Krishna Kumar Veeravalli, Kay L Saving, et al. Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway [J]. Neurobiol Dis, 2008, 32(3): 486-498. [193] Ma R, Wang Xiao-hui, Cassie lu, et al. Dexamethasone attenuated bupivacaine-induced neuron injury in vitro through a threonine–serine protein kinase B-dependent mechanism [J]. Neuroscience, 2010, 167(2): 329-342. [194] Wang Zong-yuan, Shen J, Wang Jian, et al. Lithium attenuates bupivacaine-induced neurotoxicity in vitro through phosphatidylinositol-3-kinase/threonine-serine protein kinase B- and extracellular signal-regulated kinase-dependent mechanisms [J]. Neuroscience, 2012, 206(2): 190. [195] Koichi Obata, Hiroki Yamanaka, Dai Yi, et al. Differential activation of MAPK in injured and uninjured DRG neurons following chronic constriction injury of the sciatic nerve in rats [J]. Eur J Neurosci, 2004, 20(11): 2881-2895. [196] Jee-Young Park, Eun Joo Kim, Kyoung Ja Kwon, et al. Neuroprotection by fructose-1,6-bisphosphate involves ROS alterations via p38 MAPK/ERK [J]. Brain Res, 2004, 1026(2): 295-301. [197] Sonja Horstmann, Philipp J Kahle, Gian Domenico Borasio. Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro [J]. J Neurosci Res, 1998, 52(4): 483-490. [198] Ingrid Haller, Barbara Hausott, Bettina Tomaselli, et al. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites [J]. Anesthesiology, 2006, 105(5): 1024-1033. [199] Wang X, Zhang X, Cheng Y, et al. Alpha-lipoic acid prevents bupivacaine-induced neuron injury in vitro through a PI3K/Akt-dependent mechanism [J]. Neurotoxicology, 2010, 31(1): 101-112. [200] Joseph M Neal, Michael F Mulroy, Guy Weinberg, et al. American Society of Regional Anesthesia and Pain Medicine checklist for managing local anesthetic systemic toxicity: 2012 version [J]. Reg Anesth Pain Med, 2012, 37(1): 16-18. [201] Bruguerolle B, Lorec A M. Bupivacaine kinetic changes induced by diltiazem in mice [J]. Life Sci, 1994, 54(19): PL315-319. [202] Keishi H, Hampl K F, Yuji N, et al. Epinephrine increases the neurotoxic potential of intrathecally administered lidocaine in the rat [J]. Anesthesiology, 2001, 94(5): 876-881. [203] 盛恒炜, 徐世元. 局麻药毒性惊厥的预防和治疗进展 [J]. 国际麻醉学与复苏杂志, 2003, 24(6): 333-337. [204] Uwe Rudolph, Hanns Mohler. GABA-based therapeutic approaches: GABAA receptor subtype functions [J]. Curr Opin Pharmacol, 2006, 6(1): 18-23. [205] Guy Weinberg, Timothy Vadeboncouer, Gopal A Ramaraju, et al. Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats [J]. Anesthesiology, 1998, 88(4): 1071-1075. [206] Jean Xavier Mazoit, Regine Le Guen R, Helene Beloeil, et al. Binding of long-lasting local anesthetics to lipid emulsions [J]. Anesthesiology, 2009, 110(2): 380-386. [207] Guy Weinberg, Richard Ripper, Douglas L Feinstein, et al. Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity [J]. Reg Anesth Pain Med, 2003, 28(3): 198-202. [208] Meg A Rosenblatt, Mark Abel, Gregory W Fischer, et al. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest [J]. Anesthesiology, 2006, 105(1): 217-218. [209] Litz R J, Thomas Roessel, Axel R Heller, et al. Reversal of central nervous system and cardiac toxicity after local anesthetic intoxication by lipid emulsion injection [J]. Anesth Analg, 2008, 106(5): 1575-1577, table of contents. [210] Litz R J, Popp M, Sebastian N Stehr, et al. Successful resuscitation of a patient with ropivacaine‐induced asystole after axillary plexus block using lipid infusion [J]. Anaesthesia, 2006, 61(8): 800-801. [211] Gordon Foxall, Robert A McCahon, Lamb J, et al. Levobupivacaine-induced seizures and cardiovascular collapse treated with Intralipid [J]. Anaesthesia, 2007, 62(5): 516-518. [212] Zimmer C, Piepenbrink K, Gunther Riest, et al. Cardiotoxic and neurotoxic effects after accidental intravascular bupivacaine administration. Therapy with lidocaine propofol and lipid emulsion [J]. Anaesthesist, 2007, 56(5): 449-453. [213] Hugues Ludot, Jean-Yves Tharin, Mohamed Belouadah M, et al. Successful resuscitation after ropivacaine and lidocaine-induced ventricular arrhythmia following posterior lumbar plexus block in a child [J]. Anesth Analg, 2008, 106(5): 1572-1574, table of contents. [214] Julio A Warren, R Brian Thoma, Alexandru Georgescu, et al. Intravenous lipid infusion in the successful resuscitation of local anesthetic-induced cardiovascular collapse after supraclavicular brachial plexus block [J]. Anesth Analg, 2008, 106(5): 1578-1580, table of contents. [215] Peter C Marwick, Andrew I Levin, Andre R Coetzee. Recurrence of cardiotoxicity after lipid rescue from bupivacaine-induced cardiac arrest [J]. Anesth Analg, 2009, 108(4): 1344-1346. [216] Cave G, Harrop-Griffiths W, Harvey M G, et al. AAGBI safety guideline: management of severe local anaesthetic toxicity [J]. AAGBI, 2010. |
[1] | WEI Zhen-zhen,FANG Xiao-yan,BAI Ming,MIAO Ming-san. Research Progress in Treatment of Cerebral Ischemia Injury Based on Astrocytes [J]. Acta Neuropharmacologica, 2019, 9(1): 36-43. |
[2] | LIU Cai-hong,WU Xian,TANG Su-su,HONG Hao*. Involvement of TGR5 in Aβ-Induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 11-12. |
[3] | WU Xian, LV Yang-ge, TANG Su-Su, HONG Hao. Involvement of TGR5 in Aβ-induced Neurotoxicity in Vivo [J]. Acta Neuropharmacologica, 2018, 8(4): 53-54. |
[4] | BAI Ru-bing,ZHANG Zhong-quan,CEN Juan. The Expression of P-Glycoprotein in Neurons and the Effect of Oxidative Stress on P-Glycoprotein [J]. Acta Neuropharmacologica, 2018, 8(3): 9-. |
[5] | TIAN You,WANG Xue,AI Jing. Research Progress of Basal Forebrain Cholinergic Dysfunction in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 53-64. |
[6] | ZHANG Nan,XIONG Wen-wen,XING Yuan,ZHANG Wei. Culture Method of Rat Fetal Hippocampal Neurons and Astrocytes [J]. Acta Neuropharmacologica, 2017, 7(1): 24-28. |
[7] | LING Peng,LI Yue-yue,QIAN Heng,LIAN Xiao-yuan. Regulation of Excitatory Amino Acid Neurotransmitter by Astrocytes and Its Impact to Epilepsy [J]. Acta Neuropharmacologica, 2015, 5(2): 46-53. |
[8] | GAO Yan, CHU Shi-feng, CHEN Nai-hong. Glial Cells Protect Neurons against Oxidative Stress in Huntington’s Disease [J]. Acta Neuropharmacologica, 2014, 4(3): 22-30. |
[9] | ZHANG Ji, WANG Shu, HOU Yong. Progress on the Correlation between Lead Poisoning and the Pathogenesis of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2013, 3(4): 35-38. |
[10] | JIN Can,ZHANG Dan-shen. Screening the Optimal Combination Ratio of Active Radix Salviae Miltiorrhizae Ingredients for Their Antioxidant and Hippocampal Neurons Protection Effects Using Uniform Design-High Throughput Screening Technology [J]. Acta Neuropharmacologica, 2013, 3(3): 8-14. |
[11] | ZENG Jing,XUE Jin-hua,LI Xiao,HUANG Zhi-hua. Protective Effect of 3'-daidzein Suffocates Sodium on Serum Deprivation-induced Hippocampal Neuronal Cell Damage [J]. Acta Neuropharmacologica, 2013, 3(3): 15-18. |
[12] | ZHANG Si, GU Bing, LI Hua-nan, ZHANG Guo-fu, ZHANG Shui-yin, MIN You-jiang . Induced Pluripotent Stem Cells and Their Transplantation for Spinal Cord Injury: Current Status [J]. Acta Neuropharmacologica, 2013, 3(3): 57-64. |
[13] | ZHEN Li-qing. GABAA Receptor Drugs and Neuronal Plasticity [J]. Acta Neuropharmacologica, 2012, 2(6): 40-48. |
[14] | FAN Yue,YAN Yong,SHANG Ya-zhen. A Method of Separating and Culturing Astrocytes from Rat Cerebral Cortex [J]. Acta Neuropharmacologica, 2011, 1(6): 22-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||