Previous Articles Next Articles
ZHAO Xue-ping,ZHANG han,DONG Xiao-hua
Online:
2017-12-26
Published:
2017-12-01
Contact:
董晓华,女,教授,理学博士;研究方向:神经精神药理学;Tel:+86-0313-4029421,E-mail:hbdxh76@163.com
About author:
赵学萍,女,硕士研究生;研究方向:神经精神药理学;Tel:+86-0313-4029421,E-mail:940048064@qq.com
CLC Number:
ZHAO Xue-ping,ZHANG han,DONG Xiao-hua. Research Progress of Aging-Related Ggene Clk1[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2017.06.006.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2017.06.006
[1] Jonassen T, Markus Proft, F Randez-Gil, et al. Yeast Clk1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis[J]. J Biological Chemistry, 1998, 273(6): 3351-3357. [2] Wong P, Boutis S. Hekimi S. Mutation in the Clk1 gene of Caenorhabditis elegans affect developmental and behavioral timing[J]. Genetics, 1995, 139(3): 1247-1259. [3] Bernard Lakowski, Siegfried Hekimi. Determination of life-span in Caenorhabditis elegans by four clock genes [J]. Science, 1996, 272(5264): 1010–1013. [4] Bernard Lakowski, Siegfried Hekimi. The genetics of caloric restriction in Caenorhabditis elegans[J]. Proc Natl Acad Sci USA, 1998, 95(22):13091–13096. [5] Liu Xing-xing, Jiang Ning, Hughes Bryan, et al. Evolutionary conservation of the Clk1-depeendent mechanism of longevity: loss of Mclk1 increases cellular fitness and lifespan in mice[J]. Genes Dev, 2005, 19(20): 2424–2434. [6] Wong A, Boutis P, Hekimi Siegfried. Mutations in the Clk1 gene of Caenorhabditis elegans affect developmental and behavioral timing[J]. Genetics, 1995, 139(3):1247–1259. [7] Jerome Lapointe, Siegfried Hekimi. Early mitochondrial dysfunction in long-lived Mclk1+/-mice[J]. Biol Chem, 2008, 283(38): 26217–26227. [8] Miroslav Murar, Juraj Dobias, Peter Sramel. Novel Clk1 inhibitors based on N-aryloxazol-2-amine Skeleton-A possible way to dual VEGFR2 TK/Clk1 Ligands[J]. European J Medicinal Chemistry, 2017, 126: 754-761. [9] Brandon E Aubol, Ryan M Plocinik, Malik M Keshwani, et al. N-terminus of the protein kinase Clk1 induces SR protein hyperphosphorylation[J]. Biochem, 2014, 462(1):143-152. [10] Zaruhi Stepanyan, Bryan Hughes, Dominic O Cliché, et al. Genetic and molecular characterization of Clk-1/Mclk1, a conserved determinant of the rate of aging[J]. Experimental Gerontology, 2006, 41(10): 940–951 [11] Marian Valko, Dieter Leibfritz, Jan Moncol, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International J Biochemistry & Cell Biology, 2007, 39(1):44-84. [12] Angel Catala. Lipid peroxidation of membrane phospholipids in the vertebrate retina[J]. Frontiers in Bioscience (Scholar edition), 2011, 3(1):52-60. [13] Angel Catala. Lipid peroxidation modifies the picture of membranes from the " Fluid Mosaic Model" to the "Lipid Whisker Model"[J]. Biochimie, 2012, 94(1):101-109. [14] Klaus Apel, Heribert Hirt. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annu Rev Plant Biol, 2004, 55: 373-399. [15] 段丹丹, 高丽, 王柯欣, 等. 黄芩素通过抗氧化应激延长果蝇寿命的机制[J].药学学报, 2016, 51(09):1401-1406. [16] Jason G Wood, Blanka Rogina, Siva Lavu, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans[J]. Nature, 2004, 430(7000): 686-689. [17] Je´roˆme Lapointe, Siegfried Hekimi. When a theory of aging ages badly[J]. Cell Mol Life Sci, 2010, 67(1):1-8. [18] Kevin J Pearson, Joseph A Baur, Kaitlyn N Lewis, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan[J]. Cell Metab, 2008, 8(2):157-168. [19] Viviana I Perez, Christie M Lew, Lisa A Cortez, et al. Thioredoxin 2 haploin sufficiency in mice results in impaired mitochondrial function and increased oxidative stress[J]. Free Radic Biol Med, 2009, 4(5): 882-892. [20] Blazej Andziak, Timothy P OConnor, Qi Wen-bo, et al. High oxidative damage levels in the longest-living rodent, the naked mole-rat[J]. Aging Cell, 2006, 5(6): 463-471. [21] Blazej Andziak, Rochelle Buffenstein. Disparate patterns of age related changes in lipid peroxidation in long-lived naked mole rats and shorter-lived mice[J]. Aging Cell, 2006, 5(6):525-532. [22] Jerome Lapointe, Zaruhi Stepanyan, Eve Bigras, et al. Reversal of the mitochondrial phenotype and slow development of oxidative biomarkers of aging in long-lived Mclk1+/- mice[J]. Biol Chem, 2009, 284(30): 20364-20374. [23] Jerome Lapointe, Siegfried Hekimi. Early mitochondrial dysfunction in long-lived Mclk1+/- mice[J]. Biol Chem, 2008, 283(38):26217-26227. [24] Sandeep Raha, Brian H Robinson. Mitochondria, oxygen free radicals, disease and ageing[J]. Trends Biochem Sci, 2000, 25(10):502-508. [25] Xing-Xing Liu, Ning Jiang, Bryan Hughes, et al. Evolutionary conservation of the Clk1-dependent mechanism of longevity: loss of Mclk1 increases cellular fitness and lifespan in mice[J]. Genes Development, 2005, 19(20):2424-2434. [26] Robyn Branicky, Claire Benard, Siegfried Hekimi. Clk1, mitochondria, and physiological rates[J]. Bioessays, 2000, 22(1): 48-56. [27] Michael Fry, John Silber, Lawrence A Loeb, et al. Delayed and reduced cell replication and diminishing levels of DNA polymerase- α in regenerating liver of aging mice[J]. Cell Physiol, 1984, 118(3): 225–232. [28] Francoise Levavasseur, Miyadera H, Sirois J, et al. Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration[J]. Biol Chem, 2001, 276(49): 46160-46164. [29] Miyadera H, Amino H, Hiraishi A, et al. Altered quinone biosynthesis in the long-lived Clk1 mutants of Caenorhabditis elegans[J]. Biol Chem, 2001, 276(11): 7713-7716. [30] Dantong Wang, Ying Wang, Catherine Argyriou. An enhanced immune response of Mclk1+/- mutant mice is associated with partial protection from fibrosis, cancer and the development of biomarkers of aging[J]. PLOSONE, 2012, 7 (11):e49606. [31] Pekka J Kallio, William J Wilson, Sallyann O′Brien, et al. Regulation of the hypoxiainducible transcription fact or 1αby the ubiquitin-proteasome pathway [J]. Biol Chem, 1999, 274 (10):6519-6525. [32] David Lando, Jeffery J Gorman, Murray L Whitelaw, et al. Oxygen- dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation [J]. Eur J Biochem, 2003, 270(5):781-790. [33] Du Fang, Wu Xiao-mei, Gong Qi, et al. Hyperthermia conditioned astrocyte cultured medium protects neurons from ischemic injury by the upregulation of HIF-1 alpha and the increased anti-apoptotic ability[J]. Eur J Pharmacol, 2011,666(1/3) ,19-25. [34] Zhang Zi-yan, Yan Jing-qi, Chang Yan-zhong, et al. Hypoxia inducible factor-1as a target for neurodegenerative diseases[J]. Curr Med Chem, 2011, 18(28): 4335-4343. [35] 刘莉莉, 高荣慧, 陈伟. 低氧预适应大鼠皮层缺氧诱导因子-1α 的表达及其对细胞凋亡的调控作用[J]. J Taishan Medical College,2009,30(8):591-593. [36] Dantong Wang, Danielle Malo, Siegfried Hekimi. Long-lived mouse mutants response via hypoxia-inducible factor-1a in species generation affects the immune elevated mitochondrial reactive oxygen[J]. J Immunology, 2010, 184(2):582-590. [37] Ruinan Gu, Fali Zhang, Gang Chen. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming[J]. Brain Behave Immun, 2017, 60: 206-219. [38] Ying Wang, Robyn Branicky, Zaruhi Stepanyan, et al. The Anti-neurode generation Drug Clioquinol Inhibits the Aging-associated Protein Clk1[J]. BiolChem, 2009, 284(1):314-323. |
[1] | YUAN Yong-gui. A Study of Diagnosis and Early Efficacy Prediction Biomarkers for Major Depressive Disorder [J]. Acta Neuropharmacologica, 2018, 8(4): 42-44. |
[2] | YANG Wen-zhong1, ZHOU Xue-yan1, MA Tao1,2,3*. Impaired mRNA Translational Capacity is Correlated with Aging-Dependent Memory Deficits and Behavioral Inflexibility [J]. Acta Neuropharmacologica, 2018, 8(4): 50-52. |
[3] | LIN Zhi-bin. Pharmacological Progress of Ganoderma on Anti-aging and Anti-Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(1): 9-15. |
[4] | BAI Yan-chang,JIA Yan-li,WANG Jian-hua. Value of Neuroimaging in Vascular Cognitive Impairment [J]. Acta Neuropharmacologica, 2017, 7(6): 1-6. |
[5] | BAI Yan-chang,JIA Yan-li,SONG Ya-xue,WANG Jian-hua. Advance of Functional Magnetic Resonance Imaging of Brain in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(3): 6-11. |
[6] | FENG Hui-li,WANG Peng-wen . [J]. Acta Neuropharmacologica, 2016, 6(3): 24-31. |
[7] | SU Xiao-mei, ZHANG Dan-shen. Application of Angiopep-2 Modified Nanoparticles Loaded With Various Drugs in Glioma [J]. Acta Neuropharmacologica, 2015, 5(6): 57-63. |
[8] | WANG Ting-ting, ZHANG Yu-yao, WANG Ji-xi, LIU Yang, CHEN Yong-chun, JIANG Guo-hua. Effect of Resveratrol on Longevity of Caenorhabditis Elegans and Its Potential Mechanism [J]. Acta Neuropharmacologica, 2015, 5(5): 1-6. |
[9] | TAN Xiao-hong, TIAN Jia-ming, YANG Hui, YANG Xiao-yuan. Research Progress on Chemical Constituents in Schisandra sphenanthera Rehd.et Wils. and its Pharmacological Activities [J]. Acta Neuropharmacologica, 2014, 4(6): 28-32. |
[10] | WU Peng1, LU Guo-shi2, HAN Feng2, XU Ke-ning2, WANG Hai-chen2. The Experimental Study of Susceptibility Weighted Imaging and Diffusion Weighted Imaging in the Blast Injury to the Rabbits Brain at 3.0T MRI [J]. Acta Neuropharmacologica, 2012, 2(2): 21-28. |
[11] | ZHAO Jun,WANG Jin-hui. In Vivo Application of Two-photon Microscopy in Neuropharmacological Research [J]. Acta Neuropharmacologica, 2012, 2(1): 45-64. |
[12] | LI Chao,ZHANG Li. Comparison in Tissue Distribution and Pharmacodynamics Effects between Three Chrysophanol Formulations in Mice with Cerebral Ischemia Reperfusion [J]. Acta Neuropharmacologica, 2011, 1(4): 16-25. |
[13] | Deng Liang, Shi Yi-Kai, Zhang Jun-Tian . High Temporal-spatial Resolution Neuroimaging Method Based on Reconstruction of MRI Scan Data with Optic-sensing Temporal Calibration [J]. Acta Neuropharmacologica, 2011, 1(3): 47-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||