Acta Neuropharmacologica ›› 2016, Vol. 6 ›› Issue (3): 24-31.DOI: 10.3969/j.issn.2095-396.2016.03.004
Previous Articles Next Articles
FENG Hui-li ,WANG Peng-wen
Online:
2016-06-26
Published:
2016-05-10
Contact:
王蓬文,博士,教授,博士生导师;研究方向:神经变性病的中医药防治;Tel:+86-010-84013195,E-mail:pw_wang@163.com
About author:
冯慧利,女,在读博士生;研究方向:神经变性病的中医药防治;E-mail:fenghuili1213@163.com
Supported by:
国家自然基金面上资助项目(No. 81573927),北京中医药大学研究生资助项目(No.2016-JYB-XS143)
FENG Hui-li,WANG Peng-wen . [J]. Acta Neuropharmacologica, 2016, 6(3): 24-31.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-396.2016.03.004
[1]Alzheimer's Disease International. World Alzheimer Report 2015[J]. The Global Economic Impact of Dementia, 2015.[2]Ph Scheltens, Kaj Blennow, Monique M B Breteler. Alzheimer's disease[J]. Lancet, 2016, 388 (10043): 505-517.[3]Givoanni B Frisoni, Nick C Fox, Clifford R Jack, et al. The clinical use of structural MRI in Alzheimer disease[J].Nat Rev Neurol, 2010, 6(2): 67-77.[4]John A Hardy, Gerald A Higgins. Alzheimer's disease: the amyloid cascade hypothesis[J]. Science, 1992, 256(5054): 184-185.[5]Sanjay W Pimplikar, Ralph Nixon, Nixon K Robakis, et al. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis[J]. J Neurosci, 2010, 30(45): 14946-14954.[6]Scheuner D E C, Christopher B Eckman, Malene Jensen, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease[J]. Nat Med, 1996, 2(8): 864-870.[7]Eric Karran, Marc Mercken, Bart De Strooper. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics[J]. Nat Rev Drug Discov, 2011, 10(9): 698-712.[8]Guy M McKhann, David S Knopman, Howard Chertkow, et al. The diagnosis of dementia due to Alzheimer's disease:recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 263-269.[9]Lon S Schneider, Francesca Mangialasche, Niels Adreasen, et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014[J]. J Intern Med, 2014, 275(3): 251-283.[10]Jeffrey L Cummings, Travis Morstorf, Zhong Kate. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures[J]. Alzheimers Res Ther, 2014, 6(4): 37.[11]Lon S Schneider, Mary Sano. Current Alzheimer’s disease clinical trials: methods and placebo outcomes[J]. Alzheimers Dement, 2009, 5(5): 388-397. [12]Stephen Salloway, Reisa Sperling, Nick C Fox, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease[J]. N Engl J Med, 2014, 370(4): 322-333.[13]Rachelle S Doody, Ronald G Thomas, Martin Farlow, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease[J]. N Engl J Med, 2014, 370(4): 311-321.[14]Atri A, Colding-Jorgensen E. A 5HT-6 antagonist in advanced development for the treatment of mild-moderate Alzheimer’s disease[J]. J Prevent Alzheimer Dis, 2014, 3: 220.[15]Rachelle S Doody, Rema Raman, Martin Farlow, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease[J]. N Engl J Med, 2013, 369(4): 341-350.[16]Andrew Lockhart. Imaging Alzheimer's disease pathology: one target, many ligands[J]. Drug Discov Today, 2006, 11(23-24): 1093-1099. [17]Nobuyuki Okamura, Takahiro Suemoto, Hiroshi Shimadzu, et al. Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain[J]. J Neurosci, 2004, 24(10): 2535-2541. [18]Jun Maeda, Ji Bin, Irie Toshiaki, et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography[J]. J Neurosci, 2007, 27(41): 10957-10968.[19]Karl Herholz, Klaus Ebmeier. Clinical amyloid imaging in Alzheimer’s disease[J]. Lancet Neurol, 2011, 10(7): 667-670.[20]Christopher M Clark, Michael J Pontecorvo, Thomas G Beach, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study[J].Lancet Neurol, 2012, 11(8) : 669-78.[21]Natalie L Marchant, Bruce R Reed, Charles S DeCarli, et al. Cerebrovascular disease, beta-amyloid, and cognition in aging[J]. Neurobiol Aging, 2012, 33(5): 1006.[22]Rik Ossenkoppele, Willemijn J Jansen, Gil D Rabinovici, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis[J].JAMA, 2015, 313(19): 1939-1949.[23]Willemijn J Jansen, Rik Ossenkoppele, Dirk L Knol, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis[J]. JAMA, 2015, 313(19): 1924-1938.[24]Marie Sarazin, Julien Lagarde, Michel Bottlaender. Distinct tau PET imaging patterns in typical and atypical Alzheimer’s disease[J]. Brain, 2016, 139(Pt 5): 1321-1324.[25]Dietmar Thal, Rik Vandenberghe. Monitoring the progression of Alzheimer’s disease with tau-PET[J]. Brain, 2016, 139(Pt 5): 1318-1320.[26]Victor L Villemagne, Michelle T Fodero-Tavoletti, Colin L Masters, et al. Tau imaging: early progress and future directions[J]. Lancet Neurol, 2015, 14(1): 114-124.[27]Ryuichi Harada, Nobuyuki Okamura, Shozo Furumoto, et al. [18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease[J]. Eur J Nucl Med Mol Imaging, 2015, 42(7): 1052-1061.[28]Ryuichi Harada, Nobuyuki Okamura, Shozo Furumoto, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease[J]. J Nucl Med, 2016, 57(2): 208-214. [29]Dustin W Wooten, Nicolas Guehl, Eline E Verwer, et al. Pharmacokinetic evaluation of the tau PET radiotracer [18F]T807 ([18F]AV-1451) in human subjects[J]. J Nucl Med, 2017, 58(3): 484-491.[30]Marta Marquie, Marc D Normandin, Avery C Meltzer, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies[J]. Ann Neurol, 2017, 81(1): 117-128.[31]Masahiro Maruyama, Hitoshi Shimada, Tetsuya Suhara, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron, 2013, 79(6): 1094-1108.[32]Rik Ossenkoppele, Daniel R Schonhaut, Suzanne Baker, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy[J]. Ann Neurol, 2015, 77(2): 338-342.[33] John C Morris. Dementia update 2005[J]. Alzheimer Dis Assoc Disord, 2005, 19 (2):100-117.[34]M J de Leon, Ajax George, Steven H Ferris, et al. Regional correlation of PET and CT in senile dementia of the Alzheimer type[J]. AJNR Am J Neuroradiol, 1983, 4(3): 553-556.[35] Richard Wurtman. Biomarkers in the diagnosis and management of Alzheimer’s disease[J]. Metabolism, 2015, 64(3 Suppl 1): S47-50.[36] Samuel T Henderson. High carbohydrate diets and Alzheimer's disease[J]. Med Hypotheses, 2004, 62(5): 689-700.[37] Eric M Reiman, Chen Ke-wei, Gene E Alexander, et al. Functional brain abnormalities in young adults at genetic risk for late-onsetczheimer's dementia[J]. Proc Natl Acad Sci U S A, 2004, 101 (1): 284-289.[38] Daniela Perani, Pasquale Anthony Della Rosa, Chiara Cerami, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting[J]. Neuroimage Clin, 2014, 6: 445- 454.[39]Kyle B Womack, Ramon Diaz-Arrastia, Howard J Aizenstein, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors[J]. Arch Neurol, 2011, 68(3): 329-337.[40] Jagust W J, Seab J P, Huesman R H, et al. Diminished glucose transport in Alzheimer’s disease: Dynamic pet studies[J]. J Cereb Blood Flow Metab, 1991, 11(2): 323-330. [41] Piert M, Koeppe RA, Giordani B, et al. Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET[J]. J Nucl Med,1996,37 (2):201-208.[42]冯慧利, 高凯, 魏鹏, 等. MicroPET观察姜黄素对9月龄AD小鼠脑葡萄糖代谢的影响[J]. 中国实验动物学报, 2013, 21(4): 38-41. [43]Rachel M Nicholson, Yael Kusne, Lee A Nowak, et al. Regional cerebral glucose uptake in the 3×tg model of alzheimer’s disease highlights common regional vulnerability across ad mouse models[J]. Brain Res, 2010, 1347: 179-185.[44] Roman Roy, Flavia Niccolini, Gennaro Pagano, et al. Cholinergic imaging in dementia spectrum disorders[J]. Eur J Nucl Med Mol Imaging, 2016, 43(7): 1376-1386.[45] Kuhl D E, Koeppe R A, Minoshima S, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease[J]. Neurology, 1999, 52(4): 691-699.[46] Herholz K, Weisenbach S, Zu¨ndorf G, et al. In vivo study of acetylcholine esterase in basal forebrain,amygdala, and cortex in mild to moderate Alzheimer disease[J]. Neuroimage, 2004, 21(1): 136-143.[47] Henry N Wagner. Nuclear medicine for all the world--from molecular imaging to molecular medicine[J]. J Korean Med Sci, 2007, 22(4): 595-597.[48] Susanne G Mueller, Michael W Weiner, Leon J Thal, et al. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI)[J]. Alzheimers Dement, 2005, 1(1): 55-66.[49] Herholz K, Salmon E, Perani D, et al. Discrimination between Alzhei-mer dementia and controls by automated analysis of multicenter FDG PET[J]. Neuroimage, 2002, 17(1): 302-316.[50] Chételat G, Desgranges B, de la Sayette V, et al. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease[J]? Neurology, 2003, 60(8): 1374-1377.[51]Gary W Small, Susan Y Bookheimer, Paul M Thompson, et al. Current and future uses of neuroimaging for cognitively impaired patients[J].Lancet Neurol, 2008, 7(2): 161-172. [52]李德鹏, 马云川, 苏玉盛, 等. 老年性痴呆与血管性痴呆的18F-FDG PET显像分析[J]. 中风与神经疾病杂志, 2001, 18(4): 213-214.[53]Nacer Kerrouche, Karl Herholz, Renee Mielke, et al. 18FDG PET in vascular dementia: differentiation from Alzheimer's disease using voxel-based multivariate analysis[J]. J Cereb Blood Flow Metab, 2006, 26(9): 1213-1221.[54]Yuan Y, Gu Z X, Wei W S. Fluorodeoxyglucosepositron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment:a meta-analysis[J]. AJNR Am J Neuroradiol, 2009, 30(2): 404-410.[55]Zhang S, Han D, Tan X, et al. Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of shortterm conversion to Alzheimer’s disease in subjects with mild cognitive impairment[J]. Int J Clin Pract, 2012, 66(2):185-198.[56]Jennifer L Shaffer, Jeffrey R Petrella, Forrest C Sheldon, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers[J]. Radiology, 2013, 266(2): 583-591.[57]Daniel H S Silverman, Gary W Small, Carol Y Chang, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome[J]. JAMA, 2001, 286(17): 2120-2127.[58]王世真, 朴日阳, 张春. 分子核医学(第二版) [M]. 中国协和医科大学出版社, 2004: 392-396.[59]Kuhl D E, Minoshima S, Frey K A, et al. Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex[J]. Ann Neurol, 2000, 48(3): 391-395.[60]Bohnen N I, Kaufer D I, Hendrickson R, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease[J]. J Neurol Neurosurg Psychiatry, 2005, 76(3): 315-319.[61]Kadir A, Darreh-Shori T, Almkvist O, et al. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD[J]. Neurobiol Aging, 2008, 29(8): 1204-1217. |
[1] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[2] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[3] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[4] | YU Li-li1,2,XU Li1,WANG Yi-nuo1,XUE Lu-ning1,Gou Ji-wei1,LI Hong-bo1,HOU Xue-qin1*,ZHANG Han-ting1*. Effects of Osthole on Learning and Memory and the Estrogen Pathway in Ovariectomized Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 7-8. |
[5] | WANG Hao1, ZHANG Fang-fang1, FU Hua-rong1, ZHOU Yan-meng1, LIU Xin1, HOU Xue-qin 1, HU Wei2, Rolf Hansen2, XU Ying3, James O’Donnell3, ZHANG Han-ting1,2. Targeting PDE4 for Alzheimer’s Disease and Alcoholism: An implication in Alcohol-Related Dementia? [J]. Acta Neuropharmacologica, 2018, 8(4): 39-41. |
[6] | YUAN Yong-gui. A Study of Diagnosis and Early Efficacy Prediction Biomarkers for Major Depressive Disorder [J]. Acta Neuropharmacologica, 2018, 8(4): 42-44. |
[7] | YANG Wen-zhong1, ZHOU Xue-yan1, MA Tao1,2,3*. Impaired mRNA Translational Capacity is Correlated with Aging-Dependent Memory Deficits and Behavioral Inflexibility [J]. Acta Neuropharmacologica, 2018, 8(4): 50-52. |
[8] | WANG Jia-Yue,DUAN Yan-Hong,Wang Xin-He,Zhang Xu-Liang,Xu Mei-Chen, Cao Xiao-Hua *. The Effect of PHA-543613 on Memory Disorders in Presenilin1 and Presenilin2 Conditional Double Knockout Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 52-53. |
[9] | LIN Zhi-bin. Pharmacological Progress of Ganoderma on Anti-aging and Anti-Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(1): 9-15. |
[10] | LIU Nuo,WANG Zhen-zhen,CHEN Nai-hong. The Role of Gut Flora in the Pathogenesis of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(5): 28-. |
[11] | GAO Zhi-hong1,ZUO Ya-qi2,ZHANG Xiao-li1. A New Idea of Astragaloside-Induced Bone Marrow Mesenchymal Stem Cells in the Treatment of Parkinson’s Disease [J]. Acta Neuropharmacologica, 2017, 7(5): 39-44. |
[12] | REN Jing,ZHANG Dan-shen. Research Progress of Curcumin in the Treatment of Nervous System Diseases [J]. Acta Neuropharmacologica, 2017, 7(5): 45-51. |
[13] | HOU Wen-shu,ZHANG Li. Research Progress on Therapeutic Target of Effective Ingredients of Traditional Chinese Medicine in Treating Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(5): 59-64. |
[14] | WAN Ye,GUO Chun-yan,LI Yong-min. Research Progress of Traditional Chinese Medicine in Parkinson’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 36-42. |
[15] | WANG Cui, GUO Tong-lin, SHEN Li-xia. Study on the Neuroprotective Effects of Phytoestrogens in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(4): 43-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||