Acta Neuropharmacologica ›› 2012, Vol. 2 ›› Issue (3): 52-64.
ZHANG Si1, WANG Shuo-yu2, LI Hua-nan3, ZHANG Guo-fu3, GU Bing1
Online:
2012-06-26
Published:
2013-12-25
Contact:
顾兵,男,博士后,教授,硕士生导师;研究方向:神经精神药物学;E-mail: bguemory@hotmail.com
About author:
张思,女,江西科技师范大学化学生物学硕士研究生;E-mail:847404553@qq.com
Supported by:
国家自然科学基金资助项目(No.30960448),江西省自然科学基金项目(No.20114BAB205033),江西省教育厅科技项目(No.GJJ11596)
CLC Number:
ZHANG Si, WANG Shuo-yu, LI Hua-nan, ZHANG Guo-fu, GU Bing. Oxidative Stress and Antioxidant Therapy after Acute Spinal Cord Injury[J]. Acta Neuropharmacologica, 2012, 2(3): 52-64.
[1] Florence M Bareyre, Martin E Schwab. Inflammation, degeneration and regeneration in the j injured spinal cord: insights from DNA microarrays [J]. Trends Neurosci, 2003, 26(10): 555-563.[2] Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system [J]. Cell Mol Life Sci, 2000, 57(8-9): 1287-1305.[3] Taku Sugawara, Anders Lewén, Yvan Gasche, et al. Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release [J]. FASEB J, 2002, 16(14): 1997-1999.[4] Joshua A Smith, Sookyoung Park, James S Krause, et al. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration [J]. Neurochem Int, 2013, 62(5): 764-775. [5] Sean D Christie, Ben Comeau, Tanya Myers, et al. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone [J]. Neurosurg Focus, 2008, 25(5): E5. [6] Kristin Hamann, Abigail Durkes, H Ouyang, et al. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma [J]. J Neurochem, 2008, 107(3): 712-721. [7] Kristin Hamann, Riyi Shi. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury [J]. J Neurochem, 2009, 111(6): 1348-1356. [8] Edward D Hall, Radhika A Vaishnav, Ayman G Mustafa. Antioxidant therapies for traumatic brain injury [J]. Neurotherapeutics, 2010, 7(1): 51-61. [9] Nosratola D Vaziri, Yu-Shang Lee, Lin Ching-Yi, et al. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury [J]. Brain Res, 2004, 995(1): 76-83.[10] Vittorina Della Bianca, Stefano Dusi, Ercolina Bianchini, et al. beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease [J]. J Biol Chem, 1999, 274(22): 15493-15499.[11] Edward D Hall. Antioxidant therapies for acute spinal cord injury [J]. Neurotherapeutics, 2011, 8(2): 152-167. [12] Hongshin Lee, Hye-Jin Lee, David L Sedlak, et al. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide [J]. Chemosphere, 2013, 92(6): 652-658.[13] Sadrzadeh S M, Eaton J W. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate [J]. J Clin Invest, 1988, 82(5): 1510-1515.[14] Dominic M Maggio, Katina Chatzipanteli, Neil Masters, et al. Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury [J]. J Neurotrauma, 2012, 29(12): 2244-2249. [15] Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins [J]. Amino Acids, 2003, 25(3-4): 295-311.[16] Xiong Yi-qin, Edward D Hall. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury [J]. Exp Neurol, 2009, 216(1): 105-114. [17] Radhika A Vaishnav, Indrapal N Singh, Darren M Miller, et al. Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function [J]. J Neurotrauma, 2010, 27(7): 1311-1320. [18] Somesree GhoshMitra, David R Diercks, Nathaniel C Mills, et al. Role of engineered nanocarriers for axon regeneration and guidance: current status and future trends [J]. Adv Drug Deliv Rev, 2012, 64(1): 110-125. [19] Shlomo Yehuda, Sharon Rabinovitz, Ralph L Carasso, et al. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane [J]. Neurobiol Aging, 2002, 23(5): 843-853.[20] Joseph S Beckman, Willem H Koppenol. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly [J]. Am J Physiol, 1996, 271(5 Pt 1): C1424-C1437.[21] Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury [J]. J Neurochem, 2007, 100(3): 639-649.[22] Andrzej Malecki, Rosario Garrido, Mark P Mattson, et al. 4-Hydroxynonenal induces oxidative stress and death of cultured spinal cord neurons [J]. J Neurochem, 2000, 74(6): 2278-2287.[23] Every A E, Russu I M. Opening dynamics of 8-oxoguanine in DNA [J]. J Mol Recognit, 2013, 26(4): 175-80. [24] Piao Feng-Yuan, Li Sheng, Li Qiu-Juan, et al. Abnormal expression of 8-nitroguanine in the brain of mice exposed to arsenic subchronically [J]. Ind Health, 2011, 49(2): 151-157. [25] Miral Dizdaroglu, Pawel Jaruga. Mechanisms of free radical-induced damage to DNA [J]. Free Radic Res, 2012, 46(4): 382-419. [26] Christian Garm, Maria Moreno-Villanueva, Alexander Bürkle, et al. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells [J]. Aging Cell, 2013, 12(1): 58-66. [27] Eva Syková, Alexandr Chvátal. Extracellular ionic and volume changes: the role in glia-neuron interaction [J]. J Chem Neuroanat, 1993, 6(4): 247-260.[28] Thomas Korn, Tim Magnus, Stefan Jung. Interaction with antigen-specific T cells regulates expression of the lactate transporter MCT1 in primary rat astrocytes: specific link between immunity and homeostasis [J]. Glia, 2005, 49(1): 73-83.[29] Young S Gwak, Kang Jong-hoon, Geda C Unabia, et al. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats [J]. Exp Neurol, 2012, 234(2): 362-372. [30] Troy T Rohn, Thomas R Hinds, Frank F Vincenzi. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1-pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger [J]. Biochem Pharmacol, 1996, 51(4): 471-476.[31] Joe E Springer, Ravikumar Rangaswanmy Rao, Hyang Ran Lim, et al. The functional and neuroprotective actions of Neu2000, a dual-acting pharmacological agent, in the treatment of acute spinal cord injury [J]. J Neurotrauma, 2010, 27(1): 139-149. [32] Urs Bringold, Pedram Ghafourifar, Christoph Richter, et al. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release [J]. Free Radic Biol Med, 2000, 9(3-4): 343-8.[33] Laura B Valdez, Silvia Alvarez, Silvia L Arnaiz, et al. Reactions of peroxynitrite in the mitochondrial matrix [J]. Free Radic Biol Med, 2000, 29(3-4): 349-356.[34] Patrick G Sullivan, Sairam Krishnamurthy, Samir P Patel, et al. Temporal characterization of mitochondrial bioenergetics after spinal cord injury [J]. J Neurotrauma, 2007, 24(6): 991-999.[35] Xu W, Chi L, Xu R, et al. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury [J]. Spinal Cord, 2005, 43(4): 204-213.[36] Ankita Mehta, Mayank Prabhakar, Puneet Kumar, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders [J]. Eur J Pharmacol, 2013, 698(1-3): 6-18. [37] Eugene Park, Alexander A Velumian, Michael G Fehlings. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration [J]. J Neurotrauma, 2004, 21(6): 754-774.[38] Joe E Springer, Robert D Azbill, Robert J Mark, et al. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake [J]. J Neurochem, 1997, 68(6): 2469-2476.[39] Domenico E Pellegrini-Giampietro, Glovanna Cherici, Marina Alesiani, et al. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage [J]. J Neurosci, 1990, 10(3): 1035-1041.[40] Hong Z Yin, Cheng-I Hsu, Stephen Yu, et al. TNF-α triggers rapid membrane insertion of Ca(2+) permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury [J]. Exp Neurol, 2012, 238(2): 93-102. [41] Storey K B. Oxidative stress: animal adaptations in nature [J]. Braz J Med Biol Res, 1996, 29(12): 1715-1733.[42] Irwin Fridovich. Superoxide radical and superoxide dismutases [J]. Annu Rev Biochem, 1995, 64: 97-112.[43] Jen Hill Lucas, Debra G Wheeler, Zhen Guan, et al. Effect of glutathione augmentation on lipid peroxidation after spinal cord injury [J]. J Neurotrauma, 2002, 19(6): 763-775.[44] Stephen G Hummel, Anthony J Fischer, Sean M Martin, et al. Nitric oxide as a cellular antioxidant: a little goes a long way [J]. Free Radic Biol Med, 2006, 40(3): 501-506.[45] Wang Qiang, Chen Qiong, Ding Qian, et al. Sevoflurane postconditioning attenuates spinal cord reperfusion injury through free radicals-mediated up-regulation of antioxidant enzymes in rabbits [J]. J Surg Res, 2011, 169(2): 292-300. [46] Mohamed D Morsy, Ossama A Mostafa, Waleed N Hassan. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats [J]. J Biomed Sci, 2010, 17: 55. [47] Mohamed D Morsy, Salah O Bashir. Alpha-tocopherol ameliorates oxidative renal insult associated with spinal cord reperfusion injury [J]. J Physiol Biochem, 2013, 69(3): 487-496. [48] Yuuji Taoka, Takaaki Ikata, Kenji Fukuzawa, et al. Influence of dietary vitamin E deficiency on compression injury of rat spinal cord [J]. J Nutr Sci Vitaminol (Tokyo), 1990, 36(3): 217-226.[49] L Jackson Roberts, John A Oates, MacRae F Linton, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans [J]. Free Radic Biol Med, 2007, 43(10): 1388-1393.[50] Edward D Hall, Yonkers P A, Andrus P K, et al. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury [J]. J Neurotrauma, 1992, 9 Suppl 2: S425-S442.[51] Edward D Hall, Daniel L Wolf, J Mark Braughler. Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Dose-response and time-action analysis [J]. J Neurosurg, 1984, 61(1): 124-130.[52] Wise Young, Eugene S Flamm. Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury [J]. J Neurosurg, 1982, 57(5): 667-673.[53] Douglas K Anderson, Eugene D Means, Thomas R Waters, et al. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment [J]. J Neurosurg, 1982, 56(1): 106-113.[54] Lin Hong-Sheng, Ji Zhi-Sheng, Zheng L H, et al. Effect of methylprednisolone on the activities of caspase-3, -6, -8 and -9 in rabbits with acute spinal cord injury [J]. Exp Ther Med, 2012, 4(1): 49-54. [55] Sean D Christie, Ben Comeau, Tanya Myers, et al. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone [J]. Neurosurg Focus, 2008, 25(5): E5. [56] Hirotaka Chikuda, Hideo Yasunaga, Katsushi Takeshita, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database [J]. Emerg Med J, 2013, doi:10.1136/emermed-2012-202058.[57] Daniel J Del Gaizo, Conor M Regan, Ronald D Graff, et al. The effect of methylprednisolone intravenous infusion on the expression of ciliary neurotrophic factor in a rat spinal cord injury model [J]. Spine J, 2013,13(4): 439-442. [58] Braughler J M, Chase R L, Neff G L, et al. A new 21-aminosteroid antioxidant lacking glucocorticoid activity stimulates adrenocorticotropin secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-20) cells [J]. J Pharmacol Exp Ther, 1988, 244(2): 423-427.[59] Edward D Hall. Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats [J]. J Neurosurg, 1988, 68(3): 462-465.[60] Douglas K Anderson, Edward D Hall, J Mark Braughler, et al. Effect of delayed administration of U74006F (tirilazad mesylate) on recovery of locomotor function after experimental spinal cord injury [J]. J Neurotrauma, 1991, 8(3): 187-192.[61] Koc R K, Akdemir H, Karakücük E I, et al. Effect of methylprednisolone, tirilazad mesylate and vitamin E on lipid peroxidation after experimental spinal cord injury [J]. Spinal Cord, 1999, 37(1): 29-32.[62] Mona Bains, Edward D Hall. Antioxidant therapies in traumatic brain and spinal cord injury [J]. Biochim Biophys Acta, 2012, 1822(5): 675-684. [63] Reiter R J, Carneiro R C, Oh C S. Melatonin in relation to cellular antioxidative defense mechanisms [J]. Horm Metab Res, 1997, 29(8): 363-372.[64] Biancamaria Longoni, M Giulia Salgo, William A Pryor, et al. Effects of melatonin on lipid peroxidation induced by oxygen radicals [J]. Life Sci, 1998, 62(10): 853-859.[65] Zhang Hou-wen, Giuseppe L Squadrito, William A Pryor. The reaction of melatonin with peroxynitrite: formation of melatonin radical cation and absence of stable nitrated products [J]. Biochem Biophys Res Commun, 1998, 251(1): 83-87.[66] Supriti Samantaray, Arabinda Das, Nakul P Thakore, et al. Therapeutic potential of melatonin in traumatic central nervous system injury [J]. J Pineal Res, 2009, 47(2): 134-142.[67] Fujimoto T, Nakamura T, Ikeda T, et al. Potent protective effects of melatonin on experimental spinal cord injury [J]. Spine (Phila Pa 1976), 2000, 25(7): 769-75.[68] Mehmet Er?ahin, Zarife Özdemir, Derya Özsavc?, et al. Melatonin treatment protects against spinal cord injury induced functional and biochemical changes in rat urinary bladder [J]. J Pineal Res, 2012, 52(3): 340-348. [69] Tiziana Genovese, Emanuela Mazzon, Concetta Crisafulli, et al. Effects of combination of melatonin and dexamethasone on secondary injury in an experimental mice model of spinal cord trauma [J]. J Pineal Res, 2007, 43(2): 140-153.[70] Yonggeun Hong, K J Palaksha, Kanghui Park, et al. Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury [J]. J Pineal Res, 2010, 49(3): 201-209. [71] Matthew L Kelso, Nicole N Scheff, Scheff W Scheff, et al. Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury [J]. Neurosci Lett, 2011, 488(1): 60-64. [72] Truyen Nguyen, Philip J Sherratt, Cecil B Pickett. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element [J]. Annu Rev Pharmacol Toxicol, 2003, 43: 233-260.[73] Hozumi Motohashi, Masayuki Yamamoto. Nrf2-Keap1 defines a physiologically important stress response mechanism [J].Trends Mol Med, 2004, 10(11): 549-557.[74] Li Jiang, Delinda Johnson, Marcus Calkins, et al. Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells [J]. Toxicol Sci, 2005, 83(2): 313-28. [75] Darren M Miller, Indrapal N Singh, Juan A Wang, et al. Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo [J]. Free Radic Biol Med, 2013, 57: 1-9. [76] Duan Wei-song, Zhang Rui-yan, Guo Yan-su, et al. Nrf2 activity is lost in the spinal cord and its astrocytes of aged mice [J]. In Vitro Cell Dev Biol Anim, 2009, 45(7): 388-397. [77] Li Wei-Chao, Jiang Dian-Ming, Hu Ning, et al. Lipopolysaccharide preconditioning attenuates neuroapoptosis and improves functional recovery through activation of Nrf2 in traumatic spinal cord injury rats [J]. Int J Neurosci, 2013, 123(4): 240-247. [78] Wang Xiao-liang, Juan Pablo de Rivero Vaccari, Wang Han-dong, et al. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury [J]. J Neurotrauma, 2012, 29(5): 936-945. [79] Mao Lei, Wang Han-dong, Wang Xiao-liang, et al. Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury [J]. J Surg Res, 2011, 170(1): e105-e115.[80] Christopher S Wilcox. Effects of tempol and redox-cycling nitroxides in models of oxidative stress [J]. Pharmacol Ther, 2010, 126(2): 119-145. [81] Richard T Carroll, Paul Galatsis, Susan Borosky, et al. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration [J]. Chem Res Toxicol, 2000, 13(4): 294-300.[82] Quan Hong-Hua, Kang Ku-Seong, Sohn Yoon-Kyung, et al. Tempol reduces injury area in rat model of spinal cord contusion injury through suppression of iNOS and COX-2 expression [J]. Neurol Sci, 2013,doi 10.1007/s10072-013-1295-y.[83] Xiong Yi-qin, Indrapal N Singh, Edward D Hall. Tempol protection of spinal cord mitochondria from peroxynitrite-induced oxidative damage [J]. Free Radic Res, 2009, 43(6): 604-612.[84] Xiong Yi-qin, Alexander G Rabchevsky, Edward D Hall. Role of peroxynitrite in secondary oxidative damage after spinal cord injury [J]. J Neurochem, 2007, 100(3): 639-649. [85] Virany H Hillard, Peng Hong, Zhang Yan, et al. Tempol, a nitroxide antioxidant, improves locomotor and histological outcomes after spinal cord contusion in rats [J]. J Neurotrauma, 2004, 21(10): 405-414.[86] Shazib Pervaiz, Andrea Lisa Holme. Resveratrol: its biologic targets and functional activity [J]. Antioxid Redox Signal, 2009, 11(11): 2851-2897. [87] Ates Ozkan, Suleyman Cayli, Eyup Altinoz, et al. Neuroprotection by resveratrol against traumatic brain injury in rats [J]. Mol Cell Biochem, 2007, 294(1-2): 137-144. [88] Uqursay Kiziltepe, N Nilufer Turan, Unsal Han, et al. Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury [J]. J Vasc Surg, 2004, 40(1): 138-145.[89] Ozkan Ates, Suleyman Cayli, Eyup Altinoz, et al. Effects of resveratrol and methylprednisolone on biochemical, neurobehavioral and histopathological recovery after experimental spinal cord injury [J]. Acta Pharmacol Sin, 2006, 27(10): 1317-1325.[90] Liu Chang-jiang, Shi Zhi-bin, Fan Li-hong, et al. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury [J]. Brain Res, 2011, 1374: 100-109. [91] V Kesherwani, F Atif, S Yousuf, et al. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2 [J]. Neuroscience, 2013, 241: 80-88. [92] Sahin Kavakl? Havva, Koca Cemile, Al?c? Ozlem. Antioxidant effects of curcumin in spinal cord injury in rats [J]. Ulus Travma Acil Cerrahi Derg, 2011, 17(1): 14-18.[93] Wu Aiguo, Ying Zhe, Schubert D, et al. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma [J]. Neurorehabil Neural Repair, 2011, 25(4): 332-342. [94] Berker Cemil, Kivanc Topuz, Mehmet Nusret Demircan, et al. Curcumin improves early functional results after experimental spinal cord injury [J]. Acta Neurochir (Wien), 2010, 152(9): 1583-1590.[95] Ahmet Metin Sanli, Erhan Turkoglu, Gokhan Serbes, et al. Effect of curcumin on lipid peroxidation, early ultrastructural findings and neurological recovery after experimental spinal cord contusion injury in rats [J]. Turk Neurosurg, 2012, 22(2): 189-195. [96] D Ryan Ormond, Peng Hong, Richard Zeman, et al. Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin [J]. J Neurosurg Spine, 2012, 16(5): 497-503[97] Nima Alamdari, Patrick O'Neal, Per-Olof Hasselgren. Curcumin and muscle wasting: a new role for an old drug? [J]. Nutrition, 2009, 25(2): 125-9. [98] Kristin Hamann, Genevieve Nehrt, Hui Ouyang, et al. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord [J]. J Neurochem, 2008, 104(3): 708-718. [99] Schültke E, Griebel R W, Juurlink B H. Quercetin attenuates inflammatory processes after spinal cord injury in an animal model [J]. Spinal Cord, 2010, 48(12): 857-861. [100] Ahmet Metin Sanli, Gokhan Serbes, Mustafa F Sargon, et al. Methothrexate attenuates early neutrophil infiltration and the associated lipid peroxidation in the injured spinal cord but does not induce neurotoxicity in the uninjured spinal cord in rats [J]. Acta Neurochir (Wien), 2012, 154(6): 1045-1054. [101] Kouhzaei Sogolie, Rad Iman, Mousavidoust Sara, et al. Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in rat's spinal cord [J]. Neurol Res, 2013, 35(4): 415-423. [102] Melanie L McEwen, Sullivan G Sullivan, Joe E Springer. Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats [J]. J Neurotrauma, 2007, 24(4): 613-624.[103] Nuray Yazihan, Kubilay Uzuner, Bulent Salman, et al. Erythropoietin improves oxidative stress following spinal cord trauma in rats [J]. Injury, 2008, 39(12): 1408-1413. [104] Kadir Tufan, Namik Oztanir, Ebru Ofluoglu, et al. Ultrastructure protection and attenuation of lipid peroxidation after blockade of presynaptic release of glutamate by lamotrigine in experimental spinal cord injury [J]. Neurosurg Focus, 2008, 25(5): E6. [105] Mu Xiao-jun, Robert D Azbill, Joe E Springer. Riluzole improves measures of oxidative stress following traumatic spinal cord injur [J]. Brain Res, 2000, 870(1-2): 66-72.[106] Bardakci H, Kaplan S, Karadeniz U, et al. Methylene blue decreases ischemia-reperfusion (I/R)-induced spinal cord injury: an in vivo study in an I/R rabbit model [J]. Eur Surg Res, 2006, 38(5): 482-488. [107] Hale Z Toklu, Tayfun Hakan, H Celik, et al. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats [J]. J Spinal Cord Med, 2010, 33(4): 401-409.[108] Hakan Kayali, M Fatih Ozdag, Serdar Kahraman, et al. The antioxidant effect of beta-Glucan on oxidative stress status in experimental spinal cord injury in rats [J]. Neurosurg Rev, 2005, 28(4): 298-302. |
[1] | LIU Shan, LI Wei. Research Progress on Pharmacological Effects of L-theanine [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 24-32. |
[2] | HAO Jun-rong, NIU Hong-shuang, LIU Yi-zhou, DONG Xiao-hua. Research Progress on the Role of Oxidative Stress in Diabetic Nephropathy and Its Antioxidant Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 33-38. |
[3] | LIN Si-mei, ZHOU Hong, YANG Bao-xue. The Relationship between Hyperuricemia and Chronic Kidney Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 55-64. |
[4] | ZHONG Jia-hong, WANG Hai-tao, XU Jiang-ping. Inhibition of Phosphodiesterase 4 by FCPR16 Protects SH-SY5Y Cells against MPP+-Induced Cell Death through Activating cAMP/PKA/CREB and Epac/Akt Signaling Pathways [J]. Acta Neuropharmacologica, 2018, 8(4): 54-55. |
[5] | BAI Ru-bing,ZHANG Zhong-quan,CEN Juan. The Expression of P-Glycoprotein in Neurons and the Effect of Oxidative Stress on P-Glycoprotein [J]. Acta Neuropharmacologica, 2018, 8(3): 9-. |
[6] | ZHAN Jia-hong,JIAN Wen-xuan,WAN Jiang-fan,et al. The Research Progress of the Antioxidant Effect of Natural Compounds in the Treatment of Ischemic Stroke [J]. Acta Neuropharmacologica, 2017, 7(6): 60-64. |
[7] | YANG Jie,LIU Fu-jia,TIAN Zi-xia,WANG Le-le,XIE Xin-mei,PANG Xiao-bin. Neuroprotective Effect of Mailuoning on MCAO Rats and Its Antioxidant Mechanism [J]. Acta Neuropharmacologica, 2017, 7(4): 1-7. |
[8] | WANG Sha-sha,ZHANG Zhao,ZHANG Mei-jin,HU Jin-feng,CHEN Nai-hong. Advances of Nrf 2/ARE Signaling Pathway in the Major Depression Disorder [J]. Acta Neuropharmacologica, 2016, 6(3): 32-37. |
[9] | WANG Huan-huan,XUE Qian,ZOU Yu-an. Research Progress of the Mechanism of Endogenous Antioxidant Stress in Cerebral Ischemic Preconditioning and Ischemia Reperfusion Injury [J]. Acta Neuropharmacologica, 2016, 6(2): 46-52. |
[10] | ZHANG Mei-jin,WANG Sha-sha,ZHANG Zhao,CHEN Nai-hong,HU Jin-feng. Role of Nuclear Transcription Factor Nrf2 in Parkinson’s Disease [J]. Acta Neuropharmacologica, 2016, 6(1): 35-40. |
[11] | LOU Yu-xia,ZHANG Zhao,WANG Zhen-zhen,JIANG Yi-na,ZHANG Yi,LI Lin,CHEN Nai-hong. Parkinson Associated DJ-1 Gene and Oxidative Stress [J]. Acta Neuropharmacologica, 2016, 6(1): 58-64. |
[12] | WANG Ying-ying, SONG Xiu-yun, WANG Qi, CHEN Nai-hong. Application of Natural Antioxidants in the Progress of Alzheimer's Disease [J]. Acta Neuropharmacologica, 2015, 5(6): 30-34. |
[13] | YAN Juan,ZHENG Mao-dong. Protective Effects and Mechanisms of L-carnitine in the Nervous System [J]. Acta Neuropharmacologica, 2015, 5(1): 45-50. |
[14] | ZHOU Si-bai, LI Jin-ze, LIU Rui, ZHANG Tian-tai. Recent Development of the Flavonoids on the Treatment of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2015, 5(1): 51-58. |
[15] | ZHAO Wei, LI Fang-jiang, WANG Shu. Protective Effects of Chrysophanol on Liver Injury Induced by Cerebral Ischemia-Reperfusion in Mice [J]. Acta Neuropharmacologica, 2014, 4(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||