[1] Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective[J]. Lancet Neurol, 2008, 7(2):184-190.[2] Christopher T Kodl, Elizabeth R Seaquist. Cognitive dysfunction and diabetes mellitus[J]. Endocr Rev, 2008, 29(4):494-511.[3] Shayna A Wrighten, Gerardo G Piroli, Claudia A Grillo, et al. A look inside the diabetic brain: contributors to diabetes-induced brain aging[J]. Biochim Biophys Acta, 2009, 1792(5):444-453.[4] Mastrocola R, Restivo F, Vercellinatto I, et al. Oxidative and nitrosative stress in brain mitochondria of diabetic rats[J]. J Endocrinol, 2005, 187(1):37-44.[5] Alette M Wessels, Philip Scheltens, Frederk Barkhof, et al. Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes[J]. Eur J Pharmacol, 2008, 585(1):88-96.[6] Michael Brownlee. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865):813-820.[7] Nigel A Calcutt, Mark E Cooper, Tim S Kern, et al. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials[J]. Nat Rev Drug Discov, 2009, 8(5):417-429.[8] Ryan CM, Geckle MO, Orchard TJ. Cognitive efficiency declines over time in adults with type 1 diabetes: effects of micro- and macrovascular complications[J]. Diabetologia, 2003, 46(7):940-948.[9] Jacobson AM, Ryan CM, Cleary PA, et al. Biomedical risk factors for decreased cognitive functioning in type 1 diabetes: an 18 year follow-up of the diabetes control and complications trial (DCCT) cohort[J]. Diabetologia, 2011, 54(2):245-255.[10] Anurag Kuhad, Kanwaljit Chopra. Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences[J]. Eur J Pharmacol, 2007, 576(1-3):34-42.[11] Gunjan Saxena, Sheelendra Pratap Singh, Raghvendra Pal, et al. Gugulipid, an extract of commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice[J]. Pharmacol Biochem Behav, 2007, 86(4):797-805.[12] Pravinkumar Bhutada, Yogita Mundhada, Kuldeep Bansod, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes[J]. Behav Brain Res, 2011, 220(1):30-41.[13] Anurag Kuhad, Mahendra Bishnoi, Vinod Tiwari, et al. Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits[J]. Pharmacol Biochem Behav, 2009, 92(2):251-259.[14] Roberta Schmatz, Cinthia Melazzo Mazzanti, Roselia Spanevello, et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats[J]. Eur J Pharmacol, 2009, 610(1-3):42-48.[15] Abdel Khalek Mohamed, Angelika Bierhaus, Stephan Schiekofer, et al. The role of oxidative stress and NF-kappaB activation in late diabetic complications[J].Biofactors, 1999, 10(2-3):157-167.[16] Berr C, Balansard B, Arnaud J, et al. Cognitive decline is associated with systemic oxidative stress: the EVA study. etude du vieillissement arteriel[J]. J Am Geriatr Soc, 2000, 48(10):1285-1291.[17] Koji Fukui, Koji Onodera, Tadashi Shinkai, et al. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems[J]. Ann N Y Acad Sci, 2001, 928:168-175. [18] Paul G Layer, Regina Alber, Olaf Sporns. Quantitative development and molecular forms of acetyl- and butyrylcholinesterase during morphogenesis and synaptogenesis of chick brain and retina[J]. J Neurochem, 1987, 49(1):175-182.[19] Ariel E Reyes, Daniel R Perez, Alejandra Alvarez, et al. A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme[J]. Biochem Biophys Res Commun, 1997, 232(3):652-655.[20] Anurag Kuhad, Kanwaljit Chopra. Effect of sesamol on diabetes-associated cognitive decline in rats[J]. Exp Brain Res, 2008, 185(3):411-420.[21] Anurag Kuhad, Richa Sethi, Kanwaljit Chopra. Lycopene attenuates diabetes-associated cognitive decline in rats[J]. Life Sci, 2008, 83(3-4):128-134.[22] Yasuhiro Iida, Ki-Bong Oh, Mikako Saito, et al. Detection of antifungal activity in anemarrhena asphodeloides by sensitive BCT method and isolation of its active compound[J]. J Agric Food Chem, 1999, 47(2):584-587.[23] Zhang Jian-ying, Meng Zhi-yun, Zhang Mei-ying, et al. Effect of six steroidal saponins isolated from anemarrhenae rhizoma on platelet aggregation and hemolysis in human blood[J]. Clin Chim Acta, 1999, 289(1-2):79-88[24] Zhang Jianying, Zhang Meiying, Kazunori Sugahara, et al. Effect of steroidal saponins of anemarrhenae rhizoma on superoxide generation in human neutrophils[J]. Biochem Biophys Res Commun, 1999, 259(3):636-639.[25] Hyun-Shiek Yeum, Young-Cheol Lee, Seung-Hyun Kim, et al. Fritillaria cirrhosa, anemarrhena asphodeloides, lee-mo-tang and cyclosporine a inhibit ovalbumin-induced eosinophil accumulation and Th2-mediated bronchial hyperresponsiveness in a murine model of asthma[J]. Basic Clin Pharmacol Toxicol, 2007, 100(3):205-213. [26] Bomi Lee, Hien Trung Trinh, Kangsik Jung, et al. Inhibitory effects of steroidal timosaponins isolated from the rhizomes of anemarrhena asphodeloides against passive cutaneous anaphylaxis reaction and pruritus[J]. Immunopharmacol Immunotoxicol, 2010, 32(3):357-363. [27] Xie Wei-dong, Zhao Yun-an, Zhang Yaou. Traditional Chinese medicines in treatment of patients with type 2 diabetes mellitus[J]. Evid Based Complement Alternat Med, 2011, 2011:726723.[28] 陈勤, 夏宗勤, 胡雅儿. 知母皂苷元对拟痴呆大鼠β-淀粉样肽沉积及胆碱能系统功能的影响[J].中国药理学通报, 2002,18(4):390-393.[29] Yaer Hu, Xia Zong-qin, Sun Qi-xiang, et al. A new approach to the pharmacological regulation of memory: sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models[J]. Brain Res, 2005, 1060(1-2):26-39.[30] Ouyang Shi, Sun Li-sha, Guo Sheng-lan, et al. Effects of timosaponins on learning and memory abilities of rats with dementia induced by lateral cerebral ventricular injection of amyloid beta- peptide[J]. Di Yi Jun Yi Da Xue Xue Bao, 2005, 25(2):121-126.[31] Li Tie-jun, Qiu Yan, Yang Peng-yuan, et al. Timosaponin B-II improves memory and learning dysfunction induced by cerebral ischemia in rats[J]. Neurosci Lett, 2007, 421(2):147-151.[32] Bomi Lee, Kangsik Jung, Dong-Hyun Kim. Timosaponin AIII, a saponin isolated from anemarrhena asphodeloides, ameliorates learning and memory deficits in mice[J]. Pharmacol Biochem Behav, 2009, 93(2):121-127.[33] 欧阳石, 孙莉莎, 徐江平. 知母总皂苷对大鼠脑皮质乙酰胆碱酯酶的抑制作用[J]. 中国药学杂志, 2006, 41(19):1472-1474.[34] Liu Yao-wu, Zhu Xia, Lu Qian, et al. Total saponins from rhizoma anemarrhenae ameliorate diabetes-associated cognitive decline in rats: involvement of amyloid-beta decrease in brain[J]. J Ethnopharmacol, 2012, 139(1):194-200.[35] George L Ellman, K.Diane Courtney, Valentino Andres Jr, et al. A new and rapid colorimetric determination of acetylcholinesterase activity[J]. Biochem Pharmacol, 1961, 7(2):88-95. [36] Wills ED. Mechanisms of lipid peroxide formation in animal tissues[J]. Biochem J, 1966, 99(3):667-676.[37] Jollow DJ, Mitchell JR, Zampaglione N, et al. Bromobenzene-induced liver necrosis. protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite[J]. Pharmacology, 1974, 11(3):151-169.[38] Anders A Sima. Encephalopathies: the emerging diabetic complications[J]. Acta Diabetol, 2010, 47(4):279-293.[39] Gian Sberna, Javier Saez-Valero, Li Qiao-xin, et al. Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer's disease[J]. J Neurochem, 1998, 71(2):723-731.[40] Rakonczay Z, Vincendon G, Zanetta JP. Heterogeneity of rat brain acetylcholinesterase: a study by gel filtration and gradient centrifugation[J]. J Neurochem, 1981, 37(3):662-669.[41] Doaa A Ghareeb, Hend M Hussen. Vanadium improves brain acetylcholinesterase activity on early stage alloxan-diabetic rats[J]. Neurosci Lett, 2008, 436(1):44-47.[42] Cambay Z, Baydas G, Tuzcu M, et al. Pomegranate (Punica granatum L.) flower improves learning and memory performances impaired by diabetes mellitus in rats[J]. Acta Physiol Hung, 2011, 98(4):409-420.[43] Sandhir R, Julka D, Gill KD. Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes[J]. Pharmacol Toxicol, 1994, 74(2):66-71. |