[1] Arne Schousboe, Lasse Kristoffer Bak, Karsten Kirkegaard Madsen, et al. Amino acid neurotransmitter synthesis and removal[M]. Neuroglia. Oxford University Press, Oxford, UK, 2012: 443-456. [2] Lajtha A, Berl S, Waelsch H. Amino acid and protein metabolism of the brain—IV[J]. J Neurochemistry, 1959, 3(4): 322-332. [3] Amina A Qutub, C Anthony Hunt. Glucose transport to the brain: a systems model[J]. Brain Res Rev, 2005, 49(3):595–617.[4] Mireille Bélanger, Igor Allaman, Pierre J Magistretti. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6): 724-738.[5] Lomako J, Lomako W M, Whelan W J, et al. Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogen[J]. J FASEB, 1993, 7(14): 1386-1393. [6] Bourasb C, Martinc J L, Stellac N, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle[J]. Dev Neurosci, 1998, 20(4-5): 291-299. [7] Luc Pellerin, Andrew P Halestrap, Karin Pierre. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain[J]. J Neurosci Res, 2005, 79(1-2): 55-64. [8] Harold K Kimelberg, Eric Rutledge, Susan Goderie, et al. Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release[J]. J Cereb Blood Flow Metab, 1995, 15(3): 409-416. [9] Edgar L Perez, Fredrik Lauritzen, Wang Yue, et al. Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy[J]. Neurobiology Disease, 2012, 47(3): 331-337. [10] Mirko Santello, Paola Bezzi, Andrea Volterra. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus[J]. Neuron, 2011, 69(5): 988-1001. [11] Alfonso Araque, Li Nian-zhen, Robert T Doyle, et al. SNARE protein-dependent glutamate release from astrocytes[J]. J Neurosci, 2000, 20(2): 666-673. [12] Paola Bezzi, Giorgio Carmignoto, Lucia Pasti, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes[J]. Nature, 1998, 391(6664): 281-285. [13] Vladimir Parpura, Trent A Basarsky, Liu Fang, et al. Glutamate-mediated astrocyte–neuron signalling[J]. Nature, 1994, 369:744–747.[14] Nicola B Hamilton, David Attwell. Do astrocytes really exocytose neurotransmitters?[J]. Nat Rev Neurosci, 2010, 11(4): 227-238.[15] Richard P Shank, Gudrun S Bennett, Svend O Freytag, et al. Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools[J]. Brain Res, 1985, 329(1-2):364–367.[16] Niels C Danbolt. Glutamate uptake[J]. Prog Neurobiol, 2001, 65(1): 1-105. [17] Martinez-Hernandez A, Bell K P, Michael Norenberg. Glutamine synthetase: glial localization in brain[J]. Science, 1977, 195(4284): 1356-1358. [18] Dennis S C, James C K Lai, Clark J B. Comparative studies on glutamate metabolism in synpatic and non-synaptic rat brain mitochondria[J]. Biochem J, 1977, 164(3): 727-736. [19] Farrukh A Chaudhry, Richard J Reimer, Robert H Edwards. The glutamine commute take the N line and transfer to the A[J]. J Cell Biol, 2002, 157(3): 349-355. [20] Tom Tallak Solbu, Mona Bjørkmo, Paul Berghuis, et al. SAT1, a glutamine transporter, is preferentially expressed in GABAergic neurons[J]. Frontiers in Neuroanatomy, 2010, 4: 1. [21] Monica Jenstad, Abrar Zaheer Quazi, Misha Zilberter, et al. System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate[J]. Cerebral Cortex, 2009, 19(5): 1092-1106.[22] Elling Kvamme, Ingeborg Aa Torgner, Bjorg Roberg. Kinetics and localization of brain phosphate activated glutaminase[J]. J Neurosci Res, 2001, 66(5): 951-958. [23] Robert T Fremeau, Jonathon Burman, Tayyaba Qureshi, et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate[J]. Proceedings National Academy of Sciences, 2002, 99(22): 14488-14493. [24] Shigeo Takamori, Pari Malherbe, Clemens Broger, et al. Molecular cloning and functional characterization of human vesicular glutamate transporter 3[J]. EMBO Reports, 2002, 3(8): 798-803.[25] Fremeau R T, Burman J, Qureshi T, et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate[J]. Proceedings of the National Academy of Sciences, 2002, 99(22): 14488-14493. [26] Bu D F, Erlander M G, Hitz B C, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene[J]. Proc Natl Acad Sci USA, 1992, 89(6): 2115-2119. [27] Jin H, Wu H, Osterhaus G, et al. Demonstration of functional coupling between gamma -aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles[J]. Proc Natl Acad Sci USA, 2003, 100: 4293-4298.[28] Lamigeon C, Bellier J P, Sacchettoni S, et al. Enhanced neuronal protection from oxidative stress by coculture with glutamic acid decarboxylase‐expressing astrocytes[J]. J Neurochemistry, 2001, 77(2): 598-606. [29] Pinal C S, Allan Tobin. Uniqueness and redundancy in GABA production[J]. Perspect Dev Neurobiol, 1998, 5(2-3): 109-118. [30] Helle Waagepetersen, Ursula Sonnewald, A Schousboe. The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent[J].Neurochem, 1999, 73(4):1335-1342.[31] Volker Eulenburg, Jesus Gomeza. Neurotransmitter transporters expressed in glial cells as regulators of synapse function[J]. Brain Res Rev, 2010, 63(1): 103-112. [32] Stefanie Robel, Benedikt Berninger, Magdalena Götz. The stem cell potential of glia: lessons from reactive gliosis[J]. Nature Reviews Neuroscience, 2011, 12(2): 88-104. [33] Boison D. Epilepsy[M]. In: Kettenmann H, Ransom B R, editors. Neuroglia. 3 ed. New York: Oxford University Press; 2013: 896–905.[34] Du Fu, William O Whetsell, Bassel Abou-Khalil, et al. Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy[J]. Epilepsy Res, 1993, 16(3): 223-233. [35] Gloor P. Mesial temporal sclerosis: historical background and an overview from a modern perspective[J]. Leiter Performance Scale-Revised, 1997: 689-703. [36] Wilhelm Sommer. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie[J]. Archiv Psychiatry Clinical Neuroscience, 1880, 10(3): 631-675. [37] Idil Cavus, Willard Stein Kasoff, Michael P Cassaday, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients[J]. Ann Neurol, 2005, 57(2): 226-235. [38] Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy[J]. Neuroscience, 1985, 14(2): 375-403. [39] Matthew During, Spencer D D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain[J]. Lancet, 1993, 341(8861): 1607-1610. [40] Tore Eid, Nathan Tu, Tih-Shih W Lee, et al. Regulation of astrocyte glutamine synthetase in epilepsy[J]. Neurochem Int, 2013, 63(7): 670-681. [41] W Saskia Van der Hel, Robert G E Notenboom, Bos I W M, et al. Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy[J]. Neurology, 2005, 64(2): 326-333. [42] Wang Yue, Hitten P Zaveri, Tih-Shih W Lee, et al. The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study[J]. Exp Neurol, 2009, 220(2): 293-302.[43] Gauri H Malthankar‐Phatak, Nihal De Lanerolle, Tore Eid, et al. Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy[J]. Epilepsia, 2006, 47(8): 1292-1299. [44] Thomas S Otis, Craig E Jahr. Anion currents and predicted glutamate flux through a neuronal glutamate transporter[J]. J Neurosci, 1998, 18(18): 7099-7110. [45] Javier Vaquero, Chu-han Chung, Andres T Blei. Brain edema in acute liver failure. A window to the pathogenesis of hepatic encephalopathy[J]. Ann Hepatol, 2003, 2(1): 12-22.[46] Tore Eid, Arko Ghosh, Wang Yue, et al. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats[J]. Brain, 2008, 131(8): 2061-2070. [47] Johannes Häberle, Boris Görg, Annick Toutain, et al. Inborn error of amino acid synthesis: human glutamine synthetase deficiency[J]. J Inherited Metabolic Disease, 2006, 29(2-3): 352-358. [48] Gauri H Malthankar‐Phatak, Nihal De Lanerolle, Tore Eid, et al. Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy[J]. Epilepsia, 2006, 47(8): 1292-1299.[49] Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1[J]. Science, 1997, 276(5319): 1699-1702. [50] Takemi Watanabe, Kiyoshi Morimoto, Toru Hirao, et al. Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice[J]. Brain Res, 1999, 845(1): 92-96. [51] Tih-Shih Lee, Lars Petter Bjørnsen, Carlos Paz, et al. GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus[J]. Acta Neuropatholog, 2006, 111(4): 351-363. [52] Tore Eid, Nathan Tu, Tih-Shih W Lee, et al. Regulation of astrocyte glutamine synthetase in epilepsy[J]. Neurochem Int, 2013, 63(7): 670-681.[53] Jennifer Shih, Liu Lei, Andrew Mason, et al. Loss of SIRT4 decreases GLT‐1‐dependent glutamate uptake and increases sensitivity to kainic acid[J]. J Neurochem, 2014, 131(5): 573-581. |