刑媛,张楠 ,张炜,任雷鸣#br#
出版日期:
2018-06-26
发布日期:
2018-11-16
通讯作者:
张炜,女,教授;研究方向:神经药理学;E-mail:weizhang@hebmu.edu.cn
任雷鸣,男,教授;研究方向:神经药理学、心血管药理学;E-mail:ren-leiming@263.net
作者简介:
邢媛,女,河北医科大学药理学博士研究生
基金资助:
XING Yuan,ZHANG Nan,ZHANG Wei,REN Lei-ming
Online:
2018-06-26
Published:
2018-11-16
Contact:
张炜,女,教授;研究方向:神经药理学;E-mail:weizhang@hebmu.edu.cn
任雷鸣,男,教授;研究方向:神经药理学、心血管药理学;E-mail:ren-leiming@263.net
About author:
邢媛,女,河北医科大学药理学博士研究生
Supported by:
摘要:
局部麻醉药,简称局麻药,临床上广泛用于皮肤黏膜麻醉、周围神经阻滞及脊髓神经麻醉等。但这类药物对多种组织器官,尤其是神经系统和心血管系统,具有时间及剂量依赖性的毒性作用,并且不同局麻药的毒性表现也有所差异。目前对局麻药的神经毒性研究日益增多,该文对局麻药的神经系统毒性及相关防治方法进行
综述。
中图分类号:
刑媛,张楠,张炜,任雷鸣. 局麻药的中枢神经系统毒性与防治[J]. 神经药理学报, DOI: 10.3969/j.issn.2095-1396.2018.03.003.
XING Yuan,ZHANG Nan,ZHANG Wei,REN Lei-ming. Neurotoxicity and Prevention of Local Anesthetics in Central Nervous System[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2018.03.003.
[1] Olch P D. William S. Halsted and local anesthesia contributions and complications [J]. Anesthesiology, 1975, 42(4): 479-486. [2] Jesus Calatayud, Angel González A. History of the development and evolution of local anesthesia since the coca leaf [J]. Anesthesiology, 2003, 98(6): 1503-1508. [3] 杨宝峰. 药理学 [M]. 北京: 人民卫生出版社, 2013: 112-113. [4] Daniel E Becker, Kenneth L Reed. Local anesthetics: review of pharmacological considerations [J]. Anesth Prog, 2012, 59(2): 90-101; quiz 102-103. [5] Jean-Xavier Mazoit, Bernard J Dalens. Pharmacokinetics of local anaesthetics in infants and children [J]. Clin Pharmacokinet, 2004, 43(1): 17-32. [6] Catterall W A. Voltage-gated sodium channels: structure, function, and pathophysiology [J]. J Physiol, 2013, 590(11): 564-569. [7] Philipp Lirk, Susanne Picardi, Markus W Hollmann. Local anaesthetics: 10 essentials [J]. Eur J Anaesthesiol, 2014, 31(11): 575-585. [8] John M Nusstein, Mike Beck. Effectiveness of 20% benzocaine as a topical anesthetic for intraoral injections [J]. Anesth Prog, 2003, 50(4): 159-163. [9] Jian Payandeh, Todd Scheuer, Ning Zheng, et al. The crystal structure of a voltage-gated sodium channel [J]. Nature, 2011, 475(7356): 353-358. [10] Alexander Binshtok, Bruce P Bean, Clifford J Woolf. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers [J]. Nature, 2007, 449(7162): 607-610. [11] Huang J H, Thalhammer J G, Raymond S A, et al. Susceptibility to lidocaine of impulses in different somatosensory afferent fibers of rat sciatic nerve [J]. J Pharmacol Exp Ther, 1997, 282(2): 802-811. [12] Sally N Lawson. Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres [J]. Exp Physiol, 2002, 87(2): 239-244. [13] Anna Mizzi, Thanh Tran, Devanand Mangar, et al. Amiodarone supplants lidocaine in ACLS and CPR protocols [J]. Anesthesiol Clin, 2011, 29(3): 535-545. [14] Cynthia L Darlington, Paul F Smith. Drug treatments for tinnitus [J]. Prog Brain Res, 2007, 166(1): 249-262. [15] Wolfgang Koppert, Marc Weigand, Reinhard Sittl, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery [J]. Anesth Analg, 2004, 98(4): 1050-1055, table of contents. [16] Carsten Gronwald, Vladimir Vegh, Markus W Hollmann, et al. The inhibitory potency of local anesthetics on NMDA receptor signalling depends on their structural features [J]. Eur J Pharmacol, 2012, 674(1): 13-19. [17] Hollmann M W, Durieux M E. Local anesthetics and the inflammatory response: a new therapeutic indication? [J]. Anesthesiology, 2000, 93(3): 858-875. [18] Susanne Herroeder, Sabine Pecher, Marianne E Schonherr, et al. Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial [J]. Ann Surg, 2007, 246(2): 192-200. [19] Markus W Hollmann, Susanne Picardi, Katrin S Kurz, et al. Time-dependent inhibition of G protein-coupled receptor signaling by local anesthetics [J]. Anesthesiology, 2004, 100(4): 852-860. [20] Idil Çavu?, Jonathan Romanyshyn, Jeremy T Kennard, et al. Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: Microdialysis study of 79 patients at the yale epilepsy surgery program [J]. Ann Neurol, 2016, 80(1): 35-45. [21] Kandel E R, Schwartz J H, Jessell T M, et al. Principles of Neural Science [M]. New York: McGraw Hill Publishing, 2000. [22] Pelvig D P, Pakkenberg H, Stark A K, et al. Neocortical glial cell numbers in human brains [J]. Neurobiol Aging, 2008, 29(11): 1754-1762. [23] Frederico Augusto Casarsa de Azevedo, Ludmila R B Carvalho, Lea Tenenholz Grinberg, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol, 2009, 513(5): 532-541. [24] Herculanohouzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, Plasticity and Evolution [J]. PLoS One, 2011, 6(3): e17514. [25] Chet C Sherwood, Cheryl D Stimpson, Mary Ann Raghanti, et al. Evolution of increased glia-neuron ratios in the human frontal cortex [J]. Proc Natl Acad Sci U S A, 2006, 103(37): 13606-13611. [26] Maiken Nedergaard, Bruce Ransom, Steven A Goldman. New roles for astrocytes: redefining the functional architecture of the brain [J]. Trends Neurosci, 2003, 26(10): 523-530. [27] Grazyna Rajkowska, Jose J Miguel-Hidalgo. Gliogenesis and glial pathology in depression [J]. CNS Neurol Disord Drug Targets, 2007, 6(3): 219-233. [28] Nancy Ann Oberheim, Takahiro Takano, Han Xiao-ning, et al. Uniquely hominid features of adult human astrocytes [J]. J Neurosci, 2009, 29(10): 3276-3287. [29] Alfredo Pereira Jr, Fabio Augusto Furlan. Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity [J]. Prog Neurobiol, 2010, 92(3): 405-420. [30] Maha Elsayed, Pierre J Magistretti. A new outlook on mental illnesses: glial involvement beyond the glue [J]. Front Cell Neurosci, 2015, 9:468. [31] Peter Somogyi, Nomi Eshhar, Vivian I Teichberg, et al. Subcellular localization of a putative kainate receptor in Bergmann glial cells using a monoclonal antibody in the chick and fish cerebellar cortex [J]. Neuroscience, 1990, 35(1): 9-30. [32] Teichberg V I. Glial glutamate receptors: likely actors in brain signaling [J]. FASEB J, 1991, 5(15): 3086-3091. [33] Alfonso Araque, Vladimir Parpura, Rita P Sanzgiri, et al. Tripartite synapses: glia, the unacknowledged partner [J]. Trends Neurosci, 1999, 22(5): 208-215. [34] Alfonso Araque, Giorgio Carmignoto, Philip G Haydon, et al. Gliotransmitters travel in time and space [J]. Neuron, 2014, 81(4): 728-739. [35] Gasser H. Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers [J]. Am J Physiol, 1939, 127(2): 393-414. [36] Albert J Aguayo, Garth McLenehan Bray, Suzanne C Perkins. Axon-Schwann cell relationships in neuropathies of mutant mice [J]. Ann N Y Acad Sci, 1979, 317(1): 512-531. [37] Windebank A J, Wood P, Bunge R P, et al. Myelination determines the caliber of dorsal root ganglion neurons in culture [J]. J Neurosci, 1985, 5(6): 1563-1569. [38] Sylvie M De Waegh, Virginia M Y Lee, Scott T Brady. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells [J]. Cell, 1992, 68(3): 451-463. [39] Kristjan R Jessen, Rhona Mirsky, Alison C Lloyd. Schwann cells: development and role in nerve repair [J]. Cold Spring Harb Perspect Biol, 2015, 7(7): a020487. [40] Menachem Hanani. Satellite glial cells in sensory ganglia: from form to function [J]. Brain Res Brain Res Rev, 2005, 48(3): 457-476. [41] Menachem Hanani. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function [J]. Brain Res Rev, 2010, 64(2): 304-327. [42] Rachel E Ventura, James E Goldman. Telencephalic oligodendrocytes battle it out [J]. Nat Neurosci, 2006, 9(2): 153-154. [43] Graeber M B. Glial cells: microglia during normal brain aging [M]. Encyclopedia of Neuroscience, 2009, 761–763. [44] Philip G Haydon. GLIA: listening and talking to the synapse [J]. Nat Rev Neurosci, 2001, 2(3): 185-193. [45] Allaman I, Magistretti PJ. Chapter 12-brain energy metabolism [M]. Fundamental Neuroscience . 4th ed, 2013, 261-284. [46] Pierre J Magistretti, Igor Allaman. A cellular perspective on brain energy metabolism and functional imaging [J]. Neuron, 2015, 86(4): 883-901. [47] Walz W, Mukerji S. Lactate release from cultured astrocytes and neurons: a comparison [J]. Glia, 1988, 1(6): 366-370. [48] Luc Pellerin, Pierre J Magistretti. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization [J]. Proc Natl Acad Sci U S A, 1994, 91(22): 10625-10629. [49] Julien Chuquet, Pascale Quilichini, Esther A Nimchinsky, et al. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex [J]. J Neurosci, 2010, 30(45): 15298-15303. [50] Magistretti P J, John H Morrison, Shoemaker W J, et al. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism [J]. Proc Natl Acad Sci U S A, 1981, 78(10): 6535-6539. [51] Olivier Sorg, Pierre J Magistretti. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes [J]. Brain Res, 1991, 563(1-2): 227-233. [52] Rachel E Ventura, Kristen M Harris. Three-dimensional relationships between hippocampal synapses and astrocytes [J]. J Neurosci, 1999, 19(16): 6897. [53] Norman Wale, Leonard C Jenkins. Site of action of diazepam in the prevention of lidocaine induced seizure activity in cats [J]. Can Anaesth Soc J, 1973, 20(2): 146-152. [54] James T Porter, Ken D Mccarthy. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals [J]. J Neurosci, 1996, 16(16): 5073-5081. [55] Pasti L, Volterra A, Pozzan T, et al. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ [J]. J Neurosci, 1997, 17(20): 7817-7830. [56] Michael J Schell, Mark E Molliver, Solomon H Snyder. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release [J]. Proc Natl Acad Sci U S A, 1995, 92(9): 3948-3952. [57] Jun-ichi Miyazaki, shigetada Nakanishi, Hisato Jingami. Expression and characterization of a glycine-binding fragment of the N-methyl-D-aspartate receptor subunit NR1 [J]. Biochem J, 1999, 340 ( Pt 3): 687-692. [58] Herman Wolosker, Kevin N Sheth, Masaaki Takahashi, et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine [J]. Proc Natl Acad Sci U S A, 1999, 96(2): 721-725. [59] Wolosker H, Seth Blackshaw, Snyder S H. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission [J]. Proc Natl Acad Sci USA, 1999, 96(23): 13409-13414. [60] Andrea Volterra, Jacopo Meldolesi. Astrocytes, from brain glue to communication elements: the revolution continues [J]. Nat Rev Neurosci, 2005, 6(8): 626-640. [61] Chiara Cervetto, Daniela Frattaroli, Arianna Venturini, et al. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes [J]. Neuropharmacology, 2015, 99:396-407. [62] Andrea Volterra, Nicolas Liaudet, Iaroslav Savtchouk. Astrocyte Ca2+ signalling: an unexpected complexity [J]. Nat Rev Neurosci, 2014, 15(5): 327-335. [63] M De Pitta, Brunel N, Volterra A. Astrocytes: Orchestrating synaptic plasticity? [J]. Neuroscience, 2016, 323:43-61. [64] Maiken Nedergaard, Alexei Verkhratsky. Artifact Versus Reality-How Astrocytes Contribute to Synaptic Events [J]. Glia, 2012, 60(4): 289-298. [65] Jeffrey D Rothstein, Margaret Dykes-Hoberg, Carlos A Pardo, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate [J]. Neuron, 1996, 16(3): 675-686. [66] Jessen K R. Glial cells [J]. Int J Biochem Cell Biol, 2004, 36(10): 1861-1867. [67] Courtney K R. Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics [J]. J Pharmacol Exp Ther, 1980, 213(1): 114-119. [68] Masahiro Sugimoto, Ichiro Uchida, Takashi Mashimo. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-D-aspartate (NMDA) receptors [J]. Br J Pharmacol, 2003, 138(5): 876-882. [69] Nishizawa N, Shirasaki T, Nakao S, et al. The inhibition of the N-methyl-D-aspartate receptor channel by local anesthetics in mouse CA1 pyramidal neurons [J]. Anesth Analg, 2002, 94(2): 325-330. [70] Tzu-Yu Lin, Chih-Yang Chung, Lu Cheng-wei, et al. Local anesthetics inhibit glutamate release from rat cerebral cortex synaptosomes [J]. Synapse, 2013, 67(9): 568-579. [71] Hanson E, Armbruster M, Cantu D, et al. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex [J]. Glia, 2015, 63(10): 1784-1796. [72] Khaled Moussawi, Arthur C Riegel, Satish S Nair, et al. Extracellular Glutamate: Functional Compartments Operate in Different Concentration Ranges [J]. Front Syst Neurosci, 2011, 5: 94. [73] John D Clements,Robin A J Lester, Tong Gang, et al. The time course of glutamate in the synaptic cleft [J]. Science, 1992, 258(5087): 1498-1501. [74] Zhou Y, Danbolt N C. Glutamate as a neurotransmitter in the healthy brain [J]. J Neural Transm, 2014, 121(8): 799-817. [75] Dennis Choi. Ionic dependence of glutamate neurotoxicity [J]. J Neurosci, 1987, 7(2): 369-379. [76] Kohichi Tanaka, Kei Watase, Toshiya Manabe, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1 [J]. Science, 1997, 276(5319): 1699-1702. [77] Christof Grewer, Armanda Gameiro, Zhang Zhou, et al. Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia [J]. IUBMB Life, 2008, 60(9): 609-619. [78] Erin M Rose, Joseph Koo, Jordan E Antflick, et al. Glutamate transporter coupling to Na,K-ATPase [J]. J Neurosci, 2009, 29(25): 8143-8155. [79] Denis Jabaudon, Massimo Scanziani, Beat H Gahwiler, et al. Acute decrease in net glutamate uptake during energy deprivation [J]. Proc Natl Acad Sci U S A, 2000, 97(10): 5610-5615. [80] Szatkowski M, Barbour B, Attwell D. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake [J]. Nature, 1990, 348(6300): 443-446. [81] Brian Billups, David Attwell. Modulation of non-vesicular glutamate release by pH [J]. Nature, 1996, 379(6561): 171-174. [82] Michiko Takahashi, Brian Billups, David Rossi, et al. The role of glutamate transporters in glutamate homeostasis in the brain [J]. J Exp Biol, 1997, 200(Pt 2): 401-409. [83] Phillis J W, Ren J, O'regan M H. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-threo-beta-benzyloxyaspartate [J]. Brain Res, 2000, 880(1-2): 105-112. [84] 虞希冲, 朱桐君. 谷氨酸转运体、谷氨酸/胱氨酸转运体与谷氨酸神经细胞毒作用 [J]. 中国临床药理学与治疗学, 2003, 8(5): 490-493. [85] Auroy Y, Narchi P, Antoine Messiah A, et al. Serious complications related to regional anesthesia: results of a prospective survey in France [J]. Anesthesiology, 1997, 87(3): 479-486. [86] William Irwin, Eric Fontaine, Laura Agnolucci, et al. Bupivacaine myotoxicity is mediated by mitochondria [J]. J Biol Chem, 2002, 277(14): 12221. [87] Christopher L Wu, Sean M Berenholtz, Peter J Pronovost, et al. Systematic review and analysis of postdischarge symptoms after outpatient surgery [J]. Anesthesiology, 2002, 96(4): 994-1003. [88] Julia E Pollock. Neurotoxicity of intrathecal local anaesthetics and transient neurological symptoms [J]. Best Pract Res Clin Anaesthesiol, 2003, 17(3): 471-484. [89] 刘万军, 崔学文, 马进峰. 马尾综合征影响治疗效果因素的研究 [J]. 中国矫形外科杂志, 2001, 8(2): 115-117. [90] Michael Egon Johnson. Potential neurotoxicity of spinal anesthesia with lidocaine [J]. Mayo Clin Proc, 2000, 75(9): 921-932. [91] 朱森. 椎管内麻醉后暂时性神经病学综合征疗效分析 [J]. 中国药物与临床, 2016, 07(9): 84-85. [92] 徐旭仲, 金胜威, 寿红艳, 等. 罗哌卡因脊麻后暂时性神经症状两例 [J]. 中华麻醉学杂志, 2001, 21(4):16. [93] Julia E Pollock. Transient neurologic symptoms: etiology, risk factors, and management [J]. Reg Anesth Pain Med, 2002, 27(6): 581-586. [94] Michael F Mulroy. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures [J]. Reg Anesth Pain Med, 2002, 27(6): 556-561. [95] Kenichi Sekimoto, Masaru Tobe, Shigeru Saito. Local anesthetic toxicity: acute and chronic management [J]. Acute Med Surg, 2017, 4(2): 152-160. [96] Richard Brull, Colin J L Mccartney, Vincent W S Chan, et al. Neurological complications after regional anesthesia: contemporary estimates of risk [J]. Anesth Analg, 2007, 104(4): 965-974. [97] Michael J Barrington, Roman Kluger. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade [J]. Reg Anesth Pain Med, 2013, 38(4): 289-299. [98] Brian Sites, Andreas H Taenzer, Michael D Herrick, et al. Incidence of local anesthetic systemic toxicity and postoperative neurologic symptoms associated with 12,668 ultrasound-guided nerve blocks: an analysis from a prospective clinical registry [J]. Reg Anesth Pain Med, 2012, 37(5): 478-482. [99] Knudsen K, M Beckman Suurküla, S Blomberg, et al. Central nervous and cardiovascular effects of iv infusions of ropivacaine, bupivacaine and placebo in volunteers [J]. Br J Anaesth, 1997, 78(5): 507-514. [100] Selander D, Brattsand R, Lundborg G, et al. Local anesthetics: importance of mode of application, concentration and adrenaline for the appearance of nerve lesions: an experimental study of axonal degeneration and barrier damage after intrafascicular injection or topical application of bupivacaine (Marcah) [J]. Acta anaesthesiol scand, 1979, 23(2): 127-136. [101] Mark Verlinde, Markus W Hollmann, Markus F Stevens, et al. Local anesthetic-induced neurotoxicity [J]. Int J Mol Sci, 2016, 17(3): 339. [102] Robert Werdehausen, Seyed mahdi Fazeli, Braun S, et al. Apoptosis induction by different local anaesthetics in a neuroblastoma cell line [J]. Br J Anaesth, 2009, 103(5): 711-718. [103] Robert Werdehausen, Sebastian Braun, Frank Essmann, et al. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling [J]. Anesthesiology, 2007, 107(1): 136-143. [104] Johnson M E, Uhl C B, Spittler K H, et al. Mitochondrial injury and caspase activation by the local anesthetic lidocaine [J]. Anesthesiology, 2004, 101(5): 1184-1194. [105] Xing Yuan, Zhang Nan, Zhang Wei, et al. Bupivacaine indirectly potentiates glutamate-induced intracellular calcium signaling in rat hippocampal neurons by impairing mitochondrial function in cocultured astrocytes [J]. Anesthesiology, 2018, 128(3): 539-554. [106] Markus W Hollmann, Danja Strumper, Susanne Herroeder, et al. Receptors, G proteins, and their interactions [J]. Anesthesiology, 2005, 103(5): 1066-1078. [107] Markus W Hollmann, Cosmo A Difazio, Marcel E Durieux. Ca-signaling G-protein-coupled receptors: A new site of local anesthetic action? [J]. Reg Anesth Pain Med, 2001, 26(6): 565-571. [108] Strichartz G. Protracted relief of experimental neuropathic pain by systemic local anesthetics. How, where, and when [J]. Anesthesiology, 1995, 83(4): 654-655. [109] Koppert W, Zeck S, Sittl R, et al. Low-dose lidocaine suppresses experimentally induced hyperalgesia in humans [J]. Anesthesiology, 1998, 89(6): 1345-1353. [110] Akifumi Kanai, Hiromi Hiruma, Takashi Katakura, et al. Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons [J]. Anesthesiology, 2001, 95(3): 675-680. [111] Hollmann M W, Kathrin Wieczorek, Berger A, et al. Local anesthetic inhibition of g protein-coupled receptor signaling by interference with gαq protein function [J]. Mol Pharmacol, 2001, 59(2): 294-301. [112] Norihito Kitagawa, Mayuko Oda, Tadahide Totoki. Possible mechanism of irreversible nerve injury caused by local anesthetics: detergent properties of local anesthetics and membrane disruption [J]. Anesthesiology, 2004, 100(4): 962-967. [113] Michael Egon Johnson, J Armando Saenz, Assir Daniel Dasilva, et al. Effect of local anesthetic on neuronal cytoplasmic calcium and plasma membrane lysis (necrosis) in a cell culture model [J]. Anesthesiology, 2002, 97(6): 1466-1476. [114] Michael S Gold, David B Reichling, Karl F Hampl, et al. Lidocaine toxicity in primary afferent neurons from the rat [J]. J Pharmacol Exp Ther, 1998, 285(2): 413-421. [115] Johnson M E, Gores G J, Uhl C B, et al. Cytosolic free calcium and cell death during metabolic inhibition in a neuronal cell line [J]. J Neurosci, 1994, 14(7): 4040-4049. [116] Arai Y, Kondo T, Tanabe K, et al. Enhancement of hyperthermia-induced apoptosis by local anesthetics on human histiocytic lymphoma U937 cells [J]. J Biol Chem, 2002, 277(21): 18986-18993. [117] Toshiharu Kasaba, Shin Onizuka, Masatoshi Kashiwada, et al. Increase in intracellular Ca2+ concentration is not the only cause of lidocaine-induced cell damage in the cultured neurons of Lymnaea stagnalis [J]. J Anesth, 2006, 20(3): 196-201. [118] Su Dian-san, Gu Yang, Wang Zhen-hong, et al. Lidocaine attenuates proinflammatory cytokine production induced by extracellular adenosine triphosphate in cultured rat microglia [J]. Anesth Analg, 2010, 111(3): 768-774. [119] Rosalia Perez-Castro, Sohin Patel, Zayra Viviana Garavito-Aguilar, et al. Cytotoxicity of local anesthetics in human neuronal cells [J]. Anesth Analg, 2009, 108(3): 997-1007. [120] Xu Fang, Zhang Jin, Esperanza Recio-Pinto, et al. Halothane and isoflurane augment depolarization-induced cytosolic CA2+ transients and attenuate carbachol-stimulated CA2+ transients [J]. Anesthesiology, 2000, 92(6): 1746-1756. [121] Zayra V Garavito-Aguilar, Esperanza Recio-Pinto, Alexandra V Corrales, et al. Differential thapsigargin-sensitivities and interaction of Ca2+ stores in human SH-SY5Y neuroblastoma cells [J]. Brain Res, 2004, 1011(2): 177-186. [122] Sattler R, Tymianski M, Feyaz I, et al. Voltage-sensitive calcium channels mediate calcium entry into cultured mammalian sympathetic neurons following neurite transection [J]. Brain Res, 1996, 719(1-2): 239-246. [123] Luis Pardo, Thomas J J Blanck, Esperanza Recio-Pinto. The neuronal lipid membrane permeability was markedly increased by bupivacaine and mildly affected by lidocaine and ropivacaine [J]. Eur J Pharmacol, 2002, 455(2-3): 81-90. [124] Menachem Sadeh, Krzysztof Czyewski, Lawrence Z Stern. Chronic myopathy induced by repeated bupivacaine injections [J]. J Neurol Sci, 1985, 67(2): 229-238. [125] Bradley D Bergman, James R Hebl, Jay Kent, et al. Neurologic complications of 405 consecutive continuous axillary catheters [J]. Anesth Analg, 2003, 96(1): 247-252, table of contents. [126] Leanne Groban. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model [J]. Reg Anesth Pain Med, 2003, 28(1): 3-11. [127] Toshiharu Kasaba, Shin Onizuka, Mayumi Takasaki. Procaine and mepivacaine have less toxicity in vitro than other clinically used local anesthetics [J]. Anesth Analg, 2003, 97(1): 85-90. [128] Shinichi Sakura, Andrew W Bollen, Ricardo Ciriales, et al. Local anesthetic neurotoxicity does not result from blockade of voltage-gated sodium channels [J]. Anesth Analg, 1995, 81(2): 338-346. [129] Kanai Yuko, Katsuki Hiroshi, Takasaki Mayumi. Lidocaine disrupts axonal membrane of rat sciatic nerve in vitro [J]. Anesth Analg, 2000, 91(4): 944-948. [130] Miller R J. The control of neuronal Ca2+ homeostasis [J]. Progr Neurobiol, 1991, 37(3): 255. [131] John F Butterworth, Gary R Strichartz. Molecular mechanisms of local anesthesia: a review [J]. Anesthesiology, 1990, 72(4): 711. [132] Mark Haigney, Lakatta E G, Stern M D, et al. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading [J]. Circulation, 1994, 90(1): 391-399. [133] Tetsuya Kai, Junji Nishimura, Sei Kobayashi, et al. Effects of lidocaine on intracellular Ca2+ and tension in airway smooth muscle [J]. Anesthesiology, 1993, 78(5): 954-965. [134] Wang Xiang-bing, Noriyuki Sato, Monte A Greer. Lidocaine inhibits prolactin secretion in GH4C1 cells by blocking calcium influx [J]. Mol Cell Endocrinol, 1992, 87(1-3): 157-165. [135] Siesjo B K, Memezawa H, Smith M L. Neurocytotoxicity: pharmacological implications [J]. Fundam Clin Pharmacol, 1991, 5(9): 755-767. [136] Hartley D M, Kurth M C, Bjerkness L, et al. Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration [J]. J Neurosci, 1993, 13(5): 1993-2000. [137] Shun-suke Takahashi. Local anaesthetic bupivacaine alters function of sarcoplasmic reticulum and sarcolemmal vesicles from rabbit masseter muscle [J]. Pharmacol Toxicol, 1994, 75(3-4): 119-128. [138] Howard Kutchai, James E Mahaney, Lisa M Geddis, et al. Hexanol and lidocaine affect the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum [J]. Biochemistry, 1994, 33(45): 13208-13222. [139] Varda Shoshan-Barmatz, Sigalit Zchut. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum [J]. J Membr Biol, 1993, 133(2): 171-181. [140] Abdulrahman A Almotrefi, Nduna Dzimiri. The effect of modifying potassium concentration on the inhibition of myocardial Na(+)-K(+)-ATPase by two class IB antiarrhythmic drugs: lidocaine and tocainide [J]. Gen Pharmacol, 1991, 22(6): 1097-1101. [141] Myung H Kim-Lee, Bradford T Stokes, John S Mcdonald. Procaine, lidocaine, and hypothermia inhibit calcium paradox in glial cells [J]. Anesth Analg, 1994, 79(4): 728-733. [142] Daniel L Alkon, Thomas J Nelson, Zhao Wei-qin, et al. Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade [J]. Trends Neurosci, 1998, 21(12): 529-537. [143] Friederich P, Schmitz T P. Lidocaine-induced cell death in a human model of neuronal apoptosis [J]. Eur J Anaesthesiol, 2002, 19(8): 564-570. [144] Philipp Lirk, Ingrid Haller, Robert R Myers, et al. Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo [J]. Anesthesiology, 2006, 104(6): 1266-1273. [145] Akira Unami, Yasuo Shinohara, Tomokazu Ichikawa, et al. Biochemical and microarray analyses of bupivacaine-induced apoptosis [J]. J Toxicol Sci, 2003, 28(2): 77-94. [146] Schönfeld P, Sztark F, Slimani M, et al. Is bupivacaine a decoupler, a protonophore or a proton-leak-inducer? [J]. Febs Letters, 1992, 304(2-3): 273. [147] Grouselle M, Tueux O, Philippe Dabadie, et al. Effect of local anaesthetics on mitochondrial membrane potential in living cells [J]. Biochem J, 1990, 271(1): 269-272. [148] Keith D Garlid, R A Nakashima. Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs [J]. J Biol Chem, 1983, 258(13): 7974-7980. [149] Grant R L, Acosta D Jr. A digitized fluorescence imaging study on the effects of local anesthetics on cytosolic calcium and mitochondrial membrane potential in cultured rabbit corneal epithelial cells [J]. Toxicol Appl Pharmacol, 1994, 129(1): 23-35. [150] Hiroshi Terada, Shima O, Yoshida K, et al. Effects of the local anesthetic bupivacaine on oxidative phosphorylation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions [J]. J Biol Chem, 1990, 265(14): 7837-7842. [151] Francois Sztark, Monique Malgat, Philippe Dabadie, et al. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics [J]. Anesthesiology, 1998, 88(5): 1340-1349. [152] Aristide Floridi, Barbieri R, Pulselli R, et al. Effect of the local anesthetic bupivacaine on the energy metabolism of Ehrlich ascites tumor cells [J]. Oncol Res, 1994, 6(12): 593. [153] Aristide Floridi, Monica Di Padova, Rosaria Barbieri, et al. Effect of local anesthetic ropivacaine on isolated rat liver mitochondria [J]. Biochem Pharmacol, 1999, 58(6): 1009-1016. [154] Lee H T, Xu H, Siegel C D, et al. Local anesthetics induce human renal cell apoptosis [J]. Am J Nephrol, 2003, 23(3): 129-139. [155] Yoichiro Kamiya, Kazumasa Ohta, Yuzuru Kaneko. Lidocaine-induced apoptosis and necrosis in U937 cells depending on its dosage [J]. Biomed Res, 2005, 26(6): 231-239. [156] Martin R Sprick, Eva Rieser, Heiko Stahl, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8 [J]. Embo J, 2002, 21(17): 4520-4530. [157] Shida Yousefi, Sebastian Conus, Hans-Uwe Símon. Cross-talk between death and survival pathways [J]. Cell Death Differ, 2003, 10(8): 861-863. [158] Virginie Lacronique, Alexandre Mignon, Monique Fabre, et al. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice [J]. Nat Med, 1996, 2(1): 80-86. [159] Pothana Saikumar, Margarita Mikhailova, Sri Pandeswara. Regulation of caspase-9 activity by differential binding to the apoptosome complex [J]. Front Biosci, 2007, 12(9): 3343-3354. [160] Suzanne Cory, Jerry M Adams. The Bcl2 family: regulators of the cellular life-or-death switch [J]. Nat Rev Cancer, 2002, 2(9): 647-656. [161] Lisa V Doan, Olga Eydlin, Boris Piskoun, et al. Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro [J]. Anesthesiology, 2014, 120(1): 50-61. [162] Wen Xian-jie, Xu Shi-yuan, Liu Hong-zhen, et al. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells [J]. PLoS One, 2013, 8(5): e62942. [163] Misako Harato, Huang Lei, Fumio Kondo, et al. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells [J]. BMC Neurosci, 2012, 13(1): 149. [164] Park C J, Park S A, Yoon T G, et al. Bupivacaine induces apoptosis via ROS in the Schwann cell line [J]. J Dent Res, 2005, 84(9): 852-857. [165] Yumiko Nishimura, Aimi Kanada, Jun-ya Yamaguchi, et al. Cytometric analysis of lidocaine-induced cytotoxicity: A model experiment using rat thymocytes [J]. Toxicology, 2006, 218(1): 48-57. [166] H Thomas Lee, Igor Krichevsky, Xu Hua, et al. Local anesthetics worsen renal function after ischemia-reperfusion injury in rats [J]. Am J Physiol Renal Physiol, 2004, 286(1): F111-119. [167] Brad Chazotte, Garret Vanderkooi. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics [J]. Biochim Biophys Acta, 1981, 636(2): 153-161. [168] Brad Chazotte, Garret Vanderkooi, Derek Chignell. Further studies on F1-ATPase inhibition by local anesthetics [J]. Biochim Biophys Acta, 1982, 680(3): 310-316. [169] Dabadie P, Bendriss P, Erny P, et al. Uncoupling effects of local anesthetics on rat liver mitochondria [J]. FEBS Lett, 1987, 226(1): 77-82. [170] Pieluigi Nicotera, Maria Ankarcrona, Emanuela Bonfoco, et al. Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress [J]. Adv Neurol, 1997, 72(72): 95-101. [171] Guido Kroemer, John C Reed JC. Mitochondrial control of cell death [J]. Nat Med, 2000, 6(5): 513-519. [172] Michael E Johnson, Cindy B Uhl. Low dose lidocaine causes neuronal injury and apoptosis [J]. Anesthesiology, 2001, 95:A985. [173] Emmanuel Boselli, Frederic Duflo, Richard Debon, et al. The induction of apoptosis by local anesthetics: a comparison between lidocaine and ropivacaine [J]. Anesth Analg, 2003, 96(3): 755-756. [174] Jerry M Adams. Ways of dying: multiple pathways to apoptosis [J]. Genes Dev, 2003, 17(20): 2481-2495. [175] Naoufal Zamzami, Guido Kroemer. The mitochondrion in apoptosis: how Pandora's boxopens [J]. Nat Rev Mol Cell Biol, 2001, 2(1): 67-71. [176] Josef M Penninger, Guido Kroemer. Mitochondria, AIF and caspases: rivaling for cell death execution [J]. Nat Cell Biol, 2003, 5(2): 97-99. [177] Jean-Claude Martinou, Douglas R Green. Breaking the mitochondrial barrier [J]. Nat Rev Mol Cell Biol, 2001, 2(1): 63-67. [178] Donald D Newmeyer, Shelagh Ferguson-Miller. Mitochondria: releasing power for life and unleashing the machineries of death [J]. Cell, 2003, 112(4): 481-490. [179] Andre Van Zundert, Rene J E Grouls, Hendrikus H Korsten, et al. Spinal anesthesia. Volume or concentration--what matters? [J]. Reg Anesth, 1996, 21(2): 112-118. [180] Paul L Anderson, James R Bamburg. Effects of local anesthetics on nerve growth in culture [J]. Dev Neurosci, 1981, 4(4): 273-290. [181] Wilder R T, Berde C B, Griggs C T, et al. Chronic exposure to lidocaine does not alter flux through sodium channels in cultured neuronal cells [J]. Reg Anesth, 1993, 18(5): 283-289. [182] Hiromi Hiruma, Maruyama H, Simada Z B, et al. Lidocaine inhibits neurite growth in mouse dorsal root ganglion cells in culture [J]. Acta Neurobiol Exp (Wars), 1999, 59(4): 323-327. [183] Akifumi Kanai, Hiromi Hiruma, Takashi Katakura, et al. Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons [J]. Anesthesiology, 2001, 95(3): 675-680. [184] Shigeru Saito, Inas Radwan, Hideaki Obata, et al. Direct neurotoxicity of tetracaine on growth cones and neurites of growing neurons in vitro [J]. Anesthesiology, 2001, 95(3): 726-733. [185] Inas A Radwan, Shigeru Saito, Fumio Goto. The neurotoxicity of local anesthetics on growing neurons: a comparative study of lidocaine, bupivacaine, mepivacaine, and ropivacaine [J]. Anesth Analg, 2002, 94(2): 319-324. [186] Sun X, Keith D Garlid. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes [J]. J Biol Chem, 1992, 267(27): 19147. [187] Yoshihide Tsujimoto, Shigeomi Shimizu. Role of the mitochondrial membrane permeability transition in cell death [J]. Apoptosis, 2007, 12(5): 835-840. [188] Zhu Yuan, Pritam Ghosh, Patrick Charnay, et al. Neurofibromas in NF1: Schwann cell origin and role of tumor environment [J]. Science, 2002, 296(5569): 920-922. [189] Lucio Annunziato, Salvatore Amoroso, Anna Pannaccione, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions [J]. Toxicol Lett, 2003, 139(2-3): 125-133. [190] Knight Z A, Shokat K M. Chemically targeting the PI3K family [J]. Biochem Soc Trans, 2007, 35(Pt 2): 245-249. [191] Hyunju Chung, Sanghee Seo, Minho Moon, et al. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells [J]. J Endocrinol, 2008, 198(3): 511-521. [192] Venkata Ramesh Dasari, Krishna Kumar Veeravalli, Kay L Saving, et al. Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway [J]. Neurobiol Dis, 2008, 32(3): 486-498. [193] Ma R, Wang Xiao-hui, Cassie lu, et al. Dexamethasone attenuated bupivacaine-induced neuron injury in vitro through a threonine–serine protein kinase B-dependent mechanism [J]. Neuroscience, 2010, 167(2): 329-342. [194] Wang Zong-yuan, Shen J, Wang Jian, et al. Lithium attenuates bupivacaine-induced neurotoxicity in vitro through phosphatidylinositol-3-kinase/threonine-serine protein kinase B- and extracellular signal-regulated kinase-dependent mechanisms [J]. Neuroscience, 2012, 206(2): 190. [195] Koichi Obata, Hiroki Yamanaka, Dai Yi, et al. Differential activation of MAPK in injured and uninjured DRG neurons following chronic constriction injury of the sciatic nerve in rats [J]. Eur J Neurosci, 2004, 20(11): 2881-2895. [196] Jee-Young Park, Eun Joo Kim, Kyoung Ja Kwon, et al. Neuroprotection by fructose-1,6-bisphosphate involves ROS alterations via p38 MAPK/ERK [J]. Brain Res, 2004, 1026(2): 295-301. [197] Sonja Horstmann, Philipp J Kahle, Gian Domenico Borasio. Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro [J]. J Neurosci Res, 1998, 52(4): 483-490. [198] Ingrid Haller, Barbara Hausott, Bettina Tomaselli, et al. Neurotoxicity of lidocaine involves specific activation of the p38 mitogen-activated protein kinase, but not extracellular signal-regulated or c-jun N-terminal kinases, and is mediated by arachidonic acid metabolites [J]. Anesthesiology, 2006, 105(5): 1024-1033. [199] Wang X, Zhang X, Cheng Y, et al. Alpha-lipoic acid prevents bupivacaine-induced neuron injury in vitro through a PI3K/Akt-dependent mechanism [J]. Neurotoxicology, 2010, 31(1): 101-112. [200] Joseph M Neal, Michael F Mulroy, Guy Weinberg, et al. American Society of Regional Anesthesia and Pain Medicine checklist for managing local anesthetic systemic toxicity: 2012 version [J]. Reg Anesth Pain Med, 2012, 37(1): 16-18. [201] Bruguerolle B, Lorec A M. Bupivacaine kinetic changes induced by diltiazem in mice [J]. Life Sci, 1994, 54(19): PL315-319. [202] Keishi H, Hampl K F, Yuji N, et al. Epinephrine increases the neurotoxic potential of intrathecally administered lidocaine in the rat [J]. Anesthesiology, 2001, 94(5): 876-881. [203] 盛恒炜, 徐世元. 局麻药毒性惊厥的预防和治疗进展 [J]. 国际麻醉学与复苏杂志, 2003, 24(6): 333-337. [204] Uwe Rudolph, Hanns Mohler. GABA-based therapeutic approaches: GABAA receptor subtype functions [J]. Curr Opin Pharmacol, 2006, 6(1): 18-23. [205] Guy Weinberg, Timothy Vadeboncouer, Gopal A Ramaraju, et al. Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats [J]. Anesthesiology, 1998, 88(4): 1071-1075. [206] Jean Xavier Mazoit, Regine Le Guen R, Helene Beloeil, et al. Binding of long-lasting local anesthetics to lipid emulsions [J]. Anesthesiology, 2009, 110(2): 380-386. [207] Guy Weinberg, Richard Ripper, Douglas L Feinstein, et al. Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity [J]. Reg Anesth Pain Med, 2003, 28(3): 198-202. [208] Meg A Rosenblatt, Mark Abel, Gregory W Fischer, et al. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest [J]. Anesthesiology, 2006, 105(1): 217-218. [209] Litz R J, Thomas Roessel, Axel R Heller, et al. Reversal of central nervous system and cardiac toxicity after local anesthetic intoxication by lipid emulsion injection [J]. Anesth Analg, 2008, 106(5): 1575-1577, table of contents. [210] Litz R J, Popp M, Sebastian N Stehr, et al. Successful resuscitation of a patient with ropivacaine‐induced asystole after axillary plexus block using lipid infusion [J]. Anaesthesia, 2006, 61(8): 800-801. [211] Gordon Foxall, Robert A McCahon, Lamb J, et al. Levobupivacaine-induced seizures and cardiovascular collapse treated with Intralipid [J]. Anaesthesia, 2007, 62(5): 516-518. [212] Zimmer C, Piepenbrink K, Gunther Riest, et al. Cardiotoxic and neurotoxic effects after accidental intravascular bupivacaine administration. Therapy with lidocaine propofol and lipid emulsion [J]. Anaesthesist, 2007, 56(5): 449-453. [213] Hugues Ludot, Jean-Yves Tharin, Mohamed Belouadah M, et al. Successful resuscitation after ropivacaine and lidocaine-induced ventricular arrhythmia following posterior lumbar plexus block in a child [J]. Anesth Analg, 2008, 106(5): 1572-1574, table of contents. [214] Julio A Warren, R Brian Thoma, Alexandru Georgescu, et al. Intravenous lipid infusion in the successful resuscitation of local anesthetic-induced cardiovascular collapse after supraclavicular brachial plexus block [J]. Anesth Analg, 2008, 106(5): 1578-1580, table of contents. [215] Peter C Marwick, Andrew I Levin, Andre R Coetzee. Recurrence of cardiotoxicity after lipid rescue from bupivacaine-induced cardiac arrest [J]. Anesth Analg, 2009, 108(4): 1344-1346. [216] Cave G, Harrop-Griffiths W, Harvey M G, et al. AAGBI safety guideline: management of severe local anaesthetic toxicity [J]. AAGBI, 2010. |
[1] | 魏珍珍,方晓艳,白明,苗明三. 基于星形胶质细胞的脑缺血损伤治疗研究进展[J]. 神经药理学报, 2019, 9(1): 36-43. |
[2] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[3] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[4] | 王晋辉,黄丽,陈娜. 大脑皮层GABA 能神经元缺血性损伤:易损性,机制和病理影响[J]. 神经药理学报, 2018, 8(2): 8-25. |
[5] | 禹文峰,李成朋,韩飞,官志忠. 硫辛酸抑制AIF 介导的非Caspase 凋亡通路对多巴胺能神经元的保护机制[J]. 神经药理学报, 2018, 8(2): 40-40. |
[6] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[7] | 李江曼,王一頔,王风萍,李炜. 脑缺血再灌注损伤及其星形胶质细胞相关机制研究进展[J]. 神经药理学报, 2017, 7(6): 50-59. |
[8] | 田由,王雪,艾静. 基底前脑胆碱能神经元功能异常在阿尔茨海默病中的作用相关研究进展[J]. 神经药理学报, 2017, 7(4): 53-64. |
[9] | 张耀东,张碧琼,吴文宁,等. 慢性地塞米松对海马神经元损伤及NLRP-1炎症小体激活的影响[J]. 神经药理学报, 2017, 7(3): 47-47. |
[10] | 钟佳宏,汪海涛,徐江平. α - 突触核蛋白与帕金森病[J]. 神经药理学报, 2017, 7(2): 62-62. |
[11] | 张楠,熊文雯,邢媛,张炜. 大鼠海马神经元及星形胶质细胞的体外培养[J]. 神经药理学报, 2017, 7(1): 24-28. |
[12] | 杨晓楠, 王新生. 中药制剂防治术后认知功能障碍的研究进展[J]. 神经药理学报, 2015, 5(6): 35-39. |
[13] | 凌鹏,李月月,钱恒,连晓媛. 星形胶质细胞对兴奋性氨基酸神经递质的调控及与癫痫的关系[J]. 神经药理学报, 2015, 5(2): 46-53. |
[14] | 郑延泽, 田彩云, 张浩楠, 何静波, 武海军, 覃建民, 徐继辉, 杨玉梅. 大鼠脑缺血不同时相神经功能评分、脑梗死灶体积、血清神经元特异性烯醇化酶含量的变化[J]. 神经药理学报, 2014, 4(3): 17-21. |
[15] | 高岩, 楚世峰, 陈乃宏. 亨廷顿舞蹈症、氧化应激与胶质细胞[J]. 神经药理学报, 2014, 4(3): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||