李江曼,王一頔,王风萍,李炜
出版日期:
2017-12-26
发布日期:
2017-12-01
通讯作者:
李炜,女,副教授,硕士研究生导师;研究方向:神经药理学;E-mail:leewei318@163.com
作者简介:
李江曼,女,在读硕士研究生;研究方向:神经药理学
基金资助:
LI Jiang-man,WANG Yi-di,WANG Feng-ping,LI Wei
Online:
2017-12-26
Published:
2017-12-01
Contact:
李炜,女,副教授,硕士研究生导师;研究方向:神经药理学;E-mail:leewei318@163.com
About author:
李江曼,女,在读硕士研究生;研究方向:神经药理学
Supported by:
摘要:
脑缺血再灌注损伤的机制尚未完全阐明,炎症反应、氧化应激、兴奋性氨基酸毒性、细胞内钙超载、能量代谢障碍和细胞凋亡等多方面机制互相影响、错综复杂。星形胶质细胞广泛分布于神经元之间,起支持、分隔、调控等作用,对神经系统具有重要功能,如吸收突触外的谷氨酸,调节K+ 体内平衡,缓冲活性氧过多产生等。该文通过综述近年来脑缺血再灌注损伤中有关星形胶质细胞的机制研究,为以星形胶质细胞为调控靶点改善脑缺血再灌注损伤的研究提供依据和新思路。
中图分类号:
李江曼,王一頔,王风萍,李炜. 脑缺血再灌注损伤及其星形胶质细胞相关机制研究进展[J]. 神经药理学报, DOI: 10.3969/j.issn.2095-1396.2017.06.008.
LI Jiang-man,WANG Yi-di,WANG Feng-ping,LI Wei. Research Progress of Cerebral Ischemia Reperfusion Injury and Its Mechanisms Related to Astrocytes[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2017.06.008.
[1] 吴江,贾建平.神经病学.第3版[M].北京:人民卫生出版社,2015:158. [2] Helena Pivonkova, Miroslava Anderova. Altered homeostatic functions in reactive astrocytes and their potential as a therapeutic target after brain ischemic injury[J]. Current Pharmaceutical Design, 2017, 23(33):5056-5074. [3] Norman H Bass, Helen H Hess, Alfred Pope, et al. Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex[J]. J Comp Neurol, 1971, 143(4):481–490. [4] 詹剑,李小琼,郝仁方. 金钗石斛多糖对局灶性脑缺血-再灌注大鼠的作用[J]. 中国脑血管病杂志, 2017, 14(1): 25-31. [5] Nathalie Rouach, Jacques Glowinski, Christian C Giaume. Activity-dependent neuronal control of gap-junctional communication in astrocytes[J]. J Cell Biology, 2000, 149(7):1513–1526. [6] Alfonso Araque, Rita Sanzgiri, Vladimir Parpura, et al. Astrocyte-induced modulation of synaptic transmission[J]. Can J Physiol Pharmacol, 1999, 77(9):699–706. [7] Toby G Bush, Narman Puvanachandra, Catherine H Horner, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice[J]. Neuron, 1999, 23(2):297–308. [8] Gao Q, Li Yang, Chopp M. Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult[J]. Neuroscience, 2005, 136(1):123–134. [9] Jacque C M, Vinner C, Kujas M, et al. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors[J]. J Neurol Sci, 1978, 35(1):147–155. [10] Liza Q Bundesen, Tracy Aber Scheel, Barbara S Bregman, et al. EphrinB2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats[J]. J Neurosci, 2003, 23(21):7789–7800. [11] Jennifer L Zamanian, Xu Li-jun, Lynette C Foo, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18):6391–6410. [12] Angelo C Lepore, Christine Dejea, Jessica Carmen, et al. Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration[J]. Exp Neurol, 2008, 211(2):423–432. [13] Ozge Tasdemir-Yilmaz, Marc R Freeman. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons[J]. Genes Dev, 2014, 28(1): 20–33. [14] Toby G Bush, Narman Puvanachandra, Catherine H Horner, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice[J]. Neuron, 2014, 23(2):297–308. [15] Shane A Liddelow, Guttenplan K A, Laura E Clarke, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638):481–487. [16] Mark Anderson, Joshua E Burda, Ren Yi-long, et al. Astrocyte scar formation aids central nervous system axon regeneration[J]. Nature, 2016, 532(7598):195–200. [17] Jerry Silver, Jared H Miller. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2):146–156. [18] Kelly Ceyzériat, Laurene Abjean, Maria-Angeles Carrillo-de Sauvage, et al. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? [J]. Neuroscience, 2016, 330: 205–218 [19] He Fei, Ge Wei-hong, Keri Martinowich, et al. A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis[J]. Nat Neurosci, 2005, 8(5):616–625. [20] Regina Kanski, Miriam E van Strien, Paula van Tijn, et al. A star is born: new insights into the mechanism of astrogenesis[J]. Cell Mol Life Sci, 2014, 71(3):433–447. [21] Mattson M P, Meffert M K. Roles for NF-kappaB in nerve cell survival, plasticity, and disease[J]. Cell Death Differ, 2006, 13(5):852–860. [22] Barbara Kaltschmidt, Christian Kaltschmidt. NF-kappaB in the nervous system[J]. Cold Spring Harb Perspect Biol, 2009, 1(3): a001271. [23] Han-Yun Hsiao, Chen Yu-Chen, Chen Hui-mei, et al. A critical role of astrocyte-mediated nuclear factor-kB-dependent inflammation in Huntington’s disease[J]. Hum Mol Genet, 2013, 22(9):1826–1842. [24] Migheli A, Piva Roberto, Christiana Atzori, et al. c-Jun, JNK/ SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis[J]. J Neuropathol Exp Neurol, 1997, 56(12):1314–1322. [25] Gilmore T D. Introduction to NF-kappaB: players, pathways, perspectives[J]. Oncogene, 2006, 25(51): 6680–6684. [26] Carrero I, Gonzalo M R, Martin B, et al. Oligomers of b-amyloid protein (Ab1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1b, tumour necrosis factor-a, and a nuclear factor k-B mechanism in the rat brain[J]. Exp Neurol, 2012, 236(2):215–227. [27] Lian Hong, Yang Li, Cole Allysa, et al. NFkB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease[J]. Neuron, 2015, 85(1):101–115. [28] Han-Yun Hsiao, Chen Yu-chen, Chen Hui-mei, et al. A critical role of astrocyte-mediated nuclear factor-kB-dependent inflammation in Huntington’s disease[J]. Hum Mol Genet, 2013, 22(9):1826–1842. [29] 陈戟,谭秀华,庞韬,等. 右美托咪定对全脑缺氧缺血损伤大鼠海马内星形胶质 细胞 VEGF 表达的影响[J], 实用药物与临床, 2017, 20(3):241-244 [30] 刘微, 张洋, 郭建超,等. 柚皮苷对脑缺血再灌注损伤的保护作用[J],中风与神经疾病杂志, 2017, 34(4): 292-294. [31] Wang X, Zhang M, Yang S D, et al. Pre-ischemic treadmill training alleviates brain damage via GLT-1 mediated signal pathway after ischemic stroke in rats[J]. Neuroscience, 2014, 274 : 393-402. [32] 余萍萍,王莉,唐凡人,等. 白藜芦醇对大鼠脑缺血/再灌注损伤后星形胶质细胞活化的影响[J]. 中国药理学通报, 2015 , 31( 9) : 1228 -1233 [33] Ouyang Yi-bing, Xu Li-jun, Yue Si-biao, et al. Neuroprotection by astrocytes in brain ischemia: importance of microRNAs[J]. Neurosci Lett, 2014, 17,565:53-8 [34] Zhu Sheng-mei, Jiang B, Sun H, et al. Propofol inhibits aquaporin 4 expression through a protein kinase C-dependent pathway in an astrocyte model of cerebral ischemia/reoxygenation[J]. Anesth Analg, 2009, 109(5):1493-1499. [35] Hertz Leif. Intercellular metabolic compartmentation in the brain: past, present and future[J]. Neurochem Int, 2004, 45(2-3):285-296 [36] Ernesto Carafoli, Luigia Santella, Donata Branca, et al. Generation, control, and processing of cellular calcium signals [J]. Crit Rev Biochem Mol Biol, 2001, 36(2):107-260 [37] Seiichi Oyadomari, Eiichi Araki, Koji Mori. Endoplasmic reticulum stress-mediated ap optosis in pancreatic beta-cells[J]. Apoptosis, 2002, 7(4):335-345. [38] Amanda L Sheldon, Michael B Robinson. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention [J]. Neurochem Int, 2007, 51(6-7):333-355. [39] 赵青赞,李治华,任绣花,等.谷氨酸在星形胶质细胞培养中对CX43磷酸化的调节机制[J]. 神经解剖学杂志, 2015, 31(1):19-24 [40] Heidi M McBride, Margaret Neuspiel, Sylwia Wasiak. Mitochondria: More than just a powerhouse[J]. Curr Biol, 2006, 16(14):R551–R560. [41] Pedro Monteiro, Paulo J Oliveira, Lino Gonçalves, et al. Mitochondria: Role in ischemia, reperfusion and cell death[J]. Rev Port Cardiol, 2003, 22(2):233–254. [42] John W Thompson, Srinivasan V Narayanan, Kevin B Koronowski, et al. Signaling pathways leading to ischemic mitochondrial neuroprotection[J]. J Bioenerg Biomembr, 2015, 47(1-2):101–110. [43] Donna L Granger, D Neil Granger. Pathophysiology of ischaemia-reperfusion injury[J]. J Pathol, 2000, 190(3):255–266. [44] Katherine A Cottrill, Stephen Y Chan, Joseph Loscalzo. Hypoxamirs and mitochondrial metabolism[J]. Antioxid Redox Signal, 2014, 21(8):1189–1201. [45] Lee Hsin-Ling, Chen Chwen-Lih, Steve T Yeh, et al. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion[J]. Am J Physiol Heart Circ Physiol, 2012, 302(7):H1410–H1422. [46] Wang Qun, Albert Y Sun, Agnes Simonyi, et al. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: Role of nadph oxidase-derived ros[J]. Free Radic Biol Med, 2007, 43(7):1048–1060. [47] Sang Won Suh, Byung Seop Shin, Ma Hua-long, et al. Glucose and nadph oxidase drive neuronal superoxide formation in stroke[J]. Ann Neurol, 2008, 64(6):654–663. [48] Sergey Dikalov. Cross talk between mitochondria and nadph oxidases[J]. Free Radic Biol Med, 2011, 51(7):1289–1301. [49] Kelly A Graham, Mariola Kulawiec, Kjerstin M Owens, et al. NADPH oxidase 4 is an oncoprotein localized to mitochondria[J]. Cancer Biol Ther, 2010, 10(3):223–231. [50] Theodore Kalogeris, Bao Yi-min, Ronald J Korthuis. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2:702–714. [51] Alicia J Kowaltowski, Nadja C de Souza-Pinto, Roger F Castilho, et al. Mitochondria and reactive oxygen species[J]. Free Radic Biol Med, 2009, 47(4):333–343. [52] Petr Jezek, Lydie Hlavatá. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism[J]. Int J Biochem Cell Biol, 2005, 37(12):2478–2503. [53] Magdalena L Circu, Tak Yee Aw. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radic Biol Med, 2010, 48(6):749–762. [54] Chen Hai, Hideyuki Yoshioka, Gab Seok Kim, et al. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection[J]. Antioxid Redox Signal, 2011, 14(8):1505–1517. [55] Silvia Manzanero, Tomislav Santro, Thiruma V Arumugam. Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury[J]. Neurochem Int, 2013, 62(5):712–718. [56] Thomas Hudson Sanderson, Christian A Reynolds, Rita Kumar, et al. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol, 2013, 47(1):9–23. [57] Anatoly A Starkov, Gary Fiskum. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state[J]. J Neurochem, 2003, 86(5):1101–1107. [58] Michael Trenker, Roland Malli, Ismene Fertschai, et al. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport[J]. Nat Cell Biol, 2007, 9(4):445–452. [59] Dong Huan-li, Wang Shi-lei, Zhang Zong-wang, et al. The effect of mitochondrial calcium uniporter opener spermine on diazoxide against focal cerebral ischemia—Reperfusion injury in rats[J]. J Stroke Cerebrovasc Dis, 2014, 23(2):303–309. [60] Christos Chinopoulos, Vera Adam-Vizi. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme[J]. FEBS J, 2006, 273(3):433–450 [61] Petr Jezek, Lydie Hlavatá. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism[J]. Int J Biochem Cell Biol, 2005, 37(12):2478–2503. [62] Theodore Kalogeris, Bao Yi-min, Ronald J Korthuis. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2:702–714. [63] Thomas Hudson Sanderson, Christian A Reynolds, Rita Kumar, et al. Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol, 2013, 47(1):9–23. [64] Nagendra Yadava, David G Nicholls. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone[J]. J Neurosci, 2007, 27(27):7310–7317. [65] Neil R Sims, Michelle F Anderson. Mitochondrial contributions to tissue damage in stroke[J]. Neurochem Int, 2002, 40(6):511–526. [66] Jaroslava Folbergrová, Zhao Q, Ken-ichiro Katsura, et al. N-tert-butyl-α-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia[J]. Proc Natl Acad Sci USA, 1995, 92(11):5057–5061. [67] Asta Kristine Håberg, Qu Hao-kuan, Mari Hjelstuen, et al. Effect of the pyrrolopyrimidine lipid peroxidation inhibitor U-101033E on neuronal and astrocytic metabolism and infarct volume in rats with transient middle cerebral artery occlusion[J]. Neurochem Int, 2007, 50(7-8):932–940. [68] Anna E Thoren, Stephen C Helps, Michael Nilsson, et al. The metabolism of 14C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats[J]. J Neurochem, 2006, 97(4): 968–978. [69] Yang Chen-dong, Bookyung Ko, Christopher T Hensley, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport[J]. Mol Cell, 2014, 56(3):414–424. [70] Ludmila Belayev, Zhao Wei-zhao, Raul Busto, et al. Transient middle cerebral artery occlusion by intraluminal suture 1. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation[J]. J Cereb Blood Flow Metab, 1997, 17(12): 1266–1280. [71] Neil R Sims, Hakan Muyderman. Mitochondria, oxidative metabolism and cell death in stroke[J]. Biochim Biophys Acta, 2010, 1802(1): 80–91. [72] Green D R. Apoptotic pathways: The roads to ruin[J]. Cell, 1998, 94(6):695–698. [73] Maik Hüttemann, Petr Pecina, Matthew Rainbolt, et al. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis[J]. Mitochondrion, 2011, 11(3):369–381. [74] Andrew P Halestrap, Andrew P Richardson. The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78:129–141. [75] Li Peng, Deepak Nijhawan, Imawati Budihardjo, et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91(4):479–489. [76] Guido K, John R. Mitochondrial control of cell death[J]. Nature, 2000, 6(5):513–519. [77] Garrido C, Galluzzi L, Brunet M, et al. Mechanisms of cytochrome c release from mitochondria[J]. Cell Death Differ, 2006, 13(9):1423–1433 [78] Maureen O Ripple, Michelle Abajian, Roger Springett. Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization[J]. Apoptosis, 2010, 15(5):563–573. [79] Goldstein J C, Cristina Muñoz-Pinedo, Jean-Ehrland Ricci, et al. Cytochrome c is released in a single step during apoptosis[J]. Cell Death Differ, 2005, 12(5):453–462. [80] Guido Kroemer, Bruno Dallaporta, Michele Resche-Rigon. The mitochondrial death/life regulator in apoptosis and necrosis[J]. Annu Rev Physiol, 1998, 60(1): 619–642. [81] Krishnendu Sinha, Joydeep Das, Pabitra Bikash Pal, et al. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis[J]. Arch Toxicol, 2013, 87(7):1157–1180. [82] Hiroki Yoshida, Kong Young-yun, Ritsuko Yoshida, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development[J]. Cell, 1998, 94(6):739–750. [83] Venkata Prasuja Nakka, Anchal Gusain, Suresh L Mehta, et al. Molecular mechanisms of apoptosis in cerebral ischemia: Multiple neuroprotective opportunities[J]. Mol Neurobiol, 2008, 37(1):7–38. [84] Witold Filipowicz, Suvendra N Bhattacharyya, Nahum Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? [J]. Nat Rev Genet, 2008, 9(2):102–114. [85] Victor Ambros. The functions of animal microRNAs[J]. Nature, 2004, 431(7006):350–355. [86] Lee Yoontae, Ahn Chi-young, Han Jin-ju, et al. The nuclear RNase III Drosha initiates microRNA processing[J]. Nature, 2003, 425(6956):415–419. [87] Yoontae Lee, Minju Kim, Han Jin-ju, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J, 2004, 23(20):4051–4060. [88] Tomoko Kawamata, Yukihide Tomari. Making risc[J]. Trends Biochem Sci, 2010, 35(7):368–376. [89] Maria I Almeida, Rui M Reis, George A Calin. MicroRNA history: Discovery, recent applications, and next frontiers[J]. Mutat Res, 2011, 717(1-2):1–8. [90] Eva Várallyay, Jozsef Burgyán, Zoltan Havelda. MicroRNA detection by northern blotting using locked nucleic acid probes[J]. Nat Protoc, 2008, 3(2):190–196. [91] Marc R Friedländer, Chen Wei, Catherine Adamidi, et al. Discovering microRNAs from deep sequencing data using mirdeep[J]. Nat Biotechnol, 2008, 26(4): 407–415. [92] Michela Garofalo, Gerolama Condorelli, Croce C M, et al. MicroRNAs as regulators of death receptors signaling[J]. Cell Death Differ, 2010, 17(2):200–208. [93] Paul Graves, Zeng Yan. Biogenesis of mammalian microRNAs: A global view[J]. Genom Proteom Bioinform, 2012, 10(5):239–245. [94] Lena Smirnova, Anja Grafe, Andrea Seiler, et al. Regulation of miRNA expression during neural cell specification[J]. Eur J Neurosci, 2005, 21(6):1469–1477. [95] Benjamin P Lewis, Christopher B Burge, David P Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1):15–20. [96] Kandiah Jeyaseelan, Kai Ying Lim, Arunmozhiarasi Armugam. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3):959–966. [97] F Gregory Wulczyn, Lena Smirnova, Agnieszka Rybak-Wolf, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification[J]. FASEB J, 2007, 21(2):415–426. [98] Kay Sin Tan, Arunmozhiarasi Armugam, Sugunavathi Sepramaniam, et al. Expression profile of microRNAs in young stroke patients[J]. PLoS One, 2009, 4(11): e7689. [99] Betsy T Kren, Phillip Y P Wong, Aaron Sarver, et al. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis[J]. RNA Biol, 2009, 6(1):65–72. [100] Samarjit Das, Marcella Ferlito, Oliver A Kent, et al. Nuclear miRNA regulates the mitochondrial genome in the heart[J]. Circ Res, 2012, 110(12):1596–1603. [101] Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J]. Oncogene, 2010, 29(30):4362–4368. [102] Shi Qing-li, Gary Gibson. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a[J]. J Neurochem, 2011, 118(3):440–448. [103] Sujatha Venkataraman, Irina Alimova, Fan Rong, et al. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence[J]. PLoS One, 2010, 5(6): e10748. [104] Cha Min-Ji, Jang Jin-Kyung, Onju Ham, et al. MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting camkiidelta[J]. Biochem Biophysic Res Commun, 2013, 435(4):720–726. [105] Wang Jin-li, Wu Min-hao, Wen Jin-sheng, et al. MicroRNA-155 induction by Mycobacterium bovis BCG enhances ROS production through targeting SHIP1[J]. Mol Immunol, 2014, 62(1):29–36. [106] Jennifer Sacco, Khosrow Adeli. MicroRNAs: Emerging roles in lipid and lipoprotein metabolism[J]. Curr Opin Lipidol, 2012, 23(3):220–225. [107] Woochul Chang, Chang Youn Lee, Jun Hee Park, et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J]. J Vet Sci, 2013, 14(1): 69–76. [108] Griffin S, Clark J B, Canevari L. Astrocyte-neurone communication following oxygen-glucose deprivation[J]. J Neurochem, 2005, 95(4):1015–1022. [109] Gao Ping, Irina Tchernyshyov, Tsung-Cheng Chang, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239):762–765. [110] Walter A Baseler, Dharendra Thapa, Rajaganapathi Jagannathan, et al. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart[J]. Am J Physiol Cell Physiol, 2012, 303(12):C1244–C1251. [111] Vousden K H. P53: Death star[J]. Cell, 2000, 103(5):691–694. [112] Angelina V Vaseva, Natalie D Marchenko, Kyungmin Ji, et al. P53 opens the mitochondrial permeability transition pore to trigger necrosis[J]. Cell, 2012, 149(7):1536–1548. [113] Su Wei, Stephanie Hopkins, Nicole K Nesser, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf[J]. J Immunol, 2014, 192(1):358–366. [114] Francesca Forini, Claudia Kusmic, Giuseppina Nicolini, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis[J]. Endocrinology, 2014, 155(11):4581–4590. [115] Zhang Chun-zhi, Zhang Junxia wei, Zhang An-lin, et al. Puma is a novel target of miR-221/222 in human epithelial cancers[J]. Int J Oncol, 2010, 37(6):1621–1626. [116] Li Ruo-tian, Yan Gui-jun, Li Qiao-ling, et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway[J]. PLoS One, 2012, 7(9):e44907. [117] Ouyang Yi-bing, Xu Li-jun, Lu Yu, et al. Astrocyte-enriched miR-29a targets puma and reduces neuronal vulnerability to forebrain ischemia[J]. Glia, 2013, 61(11):1784–1794. [118] Reema Roshan, Shruti Shridhar, Mayuresh A Sarangdhar, et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice[J]. RNA, 2014, 20(8):1287–1297. [119] Saeideh Jafarinejad-Farsangi, Ali Farazmand, Mahdi Mahmoudi, et al. MicroRNA-29a induces apoptosis via increasing the Bax: BCL-2 ratio in dermal fibroblasts of patients with systemic sclerosis[J]. Autoimmunity, 2015, 48(6):369–378. [120] Jeong-Mi Moon, Xu Li-xun, Rona G Giffard. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss[J]. J Cereb Blood Flow Metab, 2013, 33(12):1976–1982. [121] Shang Jing-li, Yang Fu, Wang Yu-zhao, et al. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through Apaf-1/Caspase-9 apoptotic pathway in colorectal cancer cells[J]. J Cell Biochem, 2014, 115(4):772–784. [122] Huang Li-gang, Li Jin-pin, Pang Xiao-min, et al. MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both Birc2 and Bak1 in rat brain after stroke[J]. CNS Neurosci Ther, 2015, 21(6): 496–503. |
[1] | 魏珍珍,方晓艳,白明,苗明三. 基于星形胶质细胞的脑缺血损伤治疗研究进展[J]. 神经药理学报, 2019, 9(1): 36-43. |
[2] | 刑媛,张楠,张炜,任雷鸣. 局麻药的中枢神经系统毒性与防治[J]. 神经药理学报, 2018, 8(3): 15-. |
[3] | 张佳琳,李元元,杨文亮,刘富甲,田子夏,谢欣梅,庞晓斌. 黄芪甲苷基于PI3K/Akt/Bcl-2 信号通路对PC12 细胞OGD/R 损伤的保护机制研究[J]. 神经药理学报, 2017, 7(5): 1-9. |
[4] | 余汇,钟佳宏,钟秋萍,汪海涛,王文雅, 徐江平. Tideglusib 对MPP+ 诱导的SH-SY5Y 细胞凋亡的保护作用及其机制研究[J]. 神经药理学报, 2017, 7(2): 61-61. |
[5] | 陈佳佳,冯红芳,钟佳宏,邹征强,汪海涛,徐江平. PDE4抑制剂FCPR16对局灶性脑缺血再灌注损伤大鼠的保护作用[J]. 神经药理学报, 2017, 7(2): 68-68. |
[6] | 张楠,熊文雯,邢媛,张炜. 大鼠海马神经元及星形胶质细胞的体外培养[J]. 神经药理学报, 2017, 7(1): 24-28. |
[7] | 苏蕾,景永帅,张丹参. 生物活性多糖的神经保护作用研究进展[J]. 神经药理学报, 2016, 6(4): 37-41. |
[8] | 王晓茹,安芳. 自噬及其在脑缺血再灌注损伤中作用机制[J]. 神经药理学报, 2016, 6(1): 41-48. |
[9] | 胡宝玲, 郭春燕. 芍药苷神经保护作用机制的研究进展[J]. 神经药理学报, 2015, 5(6): 51-56. |
[10] | 凌鹏,李月月,钱恒,连晓媛. 星形胶质细胞对兴奋性氨基酸神经递质的调控及与癫痫的关系[J]. 神经药理学报, 2015, 5(2): 46-53. |
[11] | 陈乾,冯飞,陈文明,杨小艳,罗勇. 红花注射液对脑缺血再灌注损伤大鼠大脑皮质Bax及Bcl-XL/Bcl-2的影响[J]. 神经药理学报, 2015, 5(1): 15-18. |
[12] | 张雯,宋俊科,杜立达,张雪,杜冠华. 急性脑缺血治疗药物研究进展[J]. 神经药理学报, 2014, 4(4): 50-58. |
[13] | 王树林, 安芳. 中药对脑缺血再灌注损伤保护作用及机制研究进展[J]. 神经药理学报, 2014, 4(3): 39-48. |
[14] | 张海红, 王树, 王金, 张季, 侯勇. 当归多糖抗氧化及神经保护作用研究进展[J]. 神经药理学报, 2014, 4(2): 39-45. |
[15] | 田慧, 张丹参. 天麻素神经保护机制的研究进展[J]. 神经药理学报, 2013, 3(5): 58-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||