神经药理学报 ›› 2018, Vol. 8 ›› Issue (2): 8-25.DOI: 10.3969/j.issn.2095-1396.2018.02.002
王晋辉1,黄丽2,陈娜1
出版日期:
2018-04-26
发布日期:
2018-04-16
通讯作者:
王晋辉,博士,特聘教授;研究方向:神经药理学;Tel:+86-10-64888472,E-mail:jhw@ibp.ac.cn
基金资助:
国家基础研究计划项目(No. 2013CB531304、2016YFC1307100),国家自然科学基金项目(No. 81671071、81471123)
WANG Jin-hui1,HUANG Li2,CHEN Na1
Online:
2018-04-26
Published:
2018-04-16
Contact:
王晋辉,博士,特聘教授;研究方向:神经药理学;Tel:+86-10-64888472,E-mail:jhw@ibp.ac.cn
Supported by:
国家基础研究计划项目(No. 2013CB531304、2016YFC1307100),国家自然科学基金项目(No. 81671071、81471123)
摘要: 大脑缺血性中风是老年人常见的神经疾病,其治疗策略包括抗凝、溶栓、神经保护和抗炎等,但疗效并非达到完全治愈。因而研究缺血性脑中风的新的病理机制和新的防治策略尤为重要。大脑γ氨基丁酸(gamma aminobutyric acid,GABA)能神经元因细胞活跃、代谢旺盛及其缓冲能力低下,对缺氧、氧化应激和毒素敏感,因而易受环境因素的影响而损伤。脑血流降低首先导致大脑星形胶质细胞和GABA 能神经元缺血性病理变化,GABA 能神经元的损伤诱导大脑兴奋和抑制的失平衡,导致兴奋毒性神经损伤和缺血性神经细胞死亡。因而,澄清GABA 能神经元易损性的机制将有助于发现新的保护神经元功能而防治脑损伤的策略。
中图分类号:
R964
王晋辉,黄丽,陈娜. 大脑皮层GABA 能神经元缺血性损伤:易损性,机制和病理影响[J]. 神经药理学报, 2018, 8(2): 8-25.
WANG Jin-hui,HUANG Li,CHEN Na. Ischemic Injury of Cortical GABAergic Neurons:Vulnerability,Mechanism and Pathological Impacts[J]. Acta Neuropharmacologica, 2018, 8(2): 8-25.
【1】 Christopher R, Nagaraja D, Shankar S K. Homocysteine and cerebral stroke in developing countries[J]. Curr Med Chem, 2007, 14(22): 2393-2401.【2】 Francesco Della Corte, Gian Luca Vignazia, M Cavaglia, et al. Stroke patients, what to do and what to avoid[J]. Minerva Anestesiol, 2002, 68(4): p. 273-7.【3】 Michael Brainin, Natan M Bornstein, Gudrun Boysen, et al. Acute neurological stroke care in Europe: results of the European Stroke Care Inventory[J]. Eur J Neurol, 2000, 7(1): 5-10.【4】 Kuller L H. Epidemiology and prevention of stroke, now and in the future[J]. Epidemiol Rev, 2000, 22(1): 14-17.【5】 Timothy Ingall. Stroke--incidence, mortality, morbidity and risk[J]. J Insur Med, 2004, 36(2): 143-52.【6】 Antonio Pinto, Antonino Tuttolomando, Domenico Di Raimondo, et al. Cerebrovascular risk factors and clinical classification of strokes[J]. Semin Vasc Med, 2004, 4(3): 287-303.【7】 Gustavo Saposnik, Oscar Del Brutto. Stroke in South America: a systematic review of incidence, prevalence, and stroke subtypes[J]. Stroke, 2003, 34(9): 2103-2107.【8】 Angel Chamorro. Immediate anticoagulation in acute focal brain ischemia revisited: gathering the evidence[J]. Stroke, 2001, 32(2): 577-578.【9】 Dalkara, T, Michael A Moskowitz. Recent developments in the experimental stroke[J]. NeuroScience News, 1999, 2(5): 20-27.【10】 Devasenapathy A, V C Hachinski. Current treatment of acute ischemic stroke[J]. NeuroScience News, 1999, 2(5): 4-13.【11】 Sebastian Jander, Michael Schroeter, Andreas Saleh. Imaging inflammation in acute brain ischemia[J]. Stroke, 2007, 38(2 Suppl): 642-645.【12】 Christopher C Leonardo, Keith R Pennypacker. Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury[J]. J Neuroinflammation, 2009, 6: 13.【13】 Macchi, L, Nathalie Sorel, Luc Christiaens. Aspirin resistance: definitions, mechanisms, prevalence, and clinical significance[J]. Curr Pharm Des, 2006, 12(2): 251-258.【14】 Keith W Muir, M Roberts. Thrombolytic therapy for stroke: a review with particular reference to elderly patients[J]. Drugs Aging, 2000, 16(1): 41-54.【15】 Alfredo Puca. Thrombolysis in cerebral ischemia. A review of clinical and experimental data[J]. J Neurosurg Sci, 1993, 37(2): 63-70.【16】 Bruce D Spiess. Ischemia--a coagulation problem? [J] J Cardiovasc Pharmacol, 1996, 27( Suppl 1): S38-41.【17】 Antonino Tuttolomondo, Riccardo Di Sciacca, et al. Neuron protection as a therapeutic target in acute ischemic stroke[J]. Curr Top Med Chem, 2009, 9(14): 1317-34.【18】 Vaughan C J, N Delanty. Neuroprotective properties of statins in cerebral ischemia and stroke[J]. Stroke, 1999, 30(9): 1969-1973.【19】 Myron D Ginsberg. Neuroprotection for ischemic stroke: past, present and future[J]. Neuropharmacology, 2008, 55(3): 26.【20】 Myron D Ginsberg. Current status of neuroprotection for cerebral ischemia: synoptic overview[J]. Stroke, 2009, 40(3 Suppl): S111-114.【21】 Era Taoufik, Lesley Probert. Ischemic neuronal damage[J]. Curr Pharm Des, 2008, 14(33): 3565-3573.【22】 Eduardo Candelario-Jalil. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics[J]. Curr Opin Investig Drugs, 2009, 10(7): 644-654.【23】 Era Taoufik, Lesley Probert. Probert, Ischemic neuronal damage[J]. Current Pharm Des, 2008, 14(33): 3565-3573.【24】 Tobias Back, O G Schuler. The natural course of lesion development in brain ischemia[J]. Acta Neurochir Suppl, 2004, 89: 55-61.【25】 Tobias Back, Thomas Hemmen, Olaf G Schuler. Lesion evolution in cerebral ischemia[J]. J Neurol, 2004, 251(4): 388-397.【26】 Matthias Endres, Ulrich Dirnagl. Ischemia and stroke[J]. Adv Exp Med Biol, 2002, 513: 455-473.【27】 Curin Y, Marie-Francoise Ritz, Ramaroson Andriantsitohaina. Andriantsitohaina, Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes[J]. Cardiovasc Hematol Agents Med Chem, 2006, 4(4): 277-288.【28】 Panickar K S, Norenberg M D, Astrocytes in cerebral ischemic injury: morphological and general considerations[J]. Glia, 2005, 50(4): 287-298.【29】 Swanson R A, Ying W, Kauppinen T M. Astrocyte influences on ischemic neuronal death[J]. Curr Mol Med, 2004, 4(2): 193-205.【30】 Brouns R, P P De Deyn. The complexity of neurobiological processes in acute ischemic stroke[J]. Clin Neurol Neurosurg, 2009, 111(6): 483-495.【31】 Fan Yuan, Deng Ping, Wang Yu-Chi, et al. Transient cerebral ischemia increases CA1 pyramidal neuron excitability[J]. Exp Neurol, 2008, 212(2): 415-421.【32】 Johansen F F. Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations[J]. Acta Neurol Scand Suppl, 1993, 150: 1-32.【33】 Mergenthaler, P., U. Dirnagl, and A. Meisel, Pathophysiology of stroke: lessons from animal models[J]. Metab Brain Dis, 2004, 19(3-4): 151-167.【34】 Georg Johannes Muller, Christine Stadelmann, Lone Bastholm, et al. Ischemia leads to apoptosis--and necrosis-like neuron death in the ischemic rat hippocampus[J]. Brain Pathol, 2004, 14(4): 415-424.【35】 Alexander G Nikonenko, Lidijia Radenovic, Pavle Andjus, et al. Structural features of ischemic damage in the hippocampus[J]. Anat Rec (Hoboken), 2009, 292(12): 1914-1921.【36】 Wang Jin-Hui. Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons[J]. Brain Research Bulletin, 2003, 60(1-2): 53-58.【37】 Castellanos M, Serena J. Applicability of biomarkers in ischemic stroke[J]. Cerebrovasc Dis, 2007, 24 (Suppl 1): 7-15.【38】 Kristian P Doyle, Roger P Simon, Mary P Stenzel-Poore. Mechanisms of ischemic brain damage[J]. Neuropharmacology, 2008, 55(3): 310-318.【39】 Hou Sheng-tao, John P MacManus. Molecular mechanisms of cerebral ischemia-induced neuronal death[J]. Int Rev Cytol, 2002, 221: 93-148.【40】 Alberto Camacho, Lourdes Massieu. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death[J]. Arch Med Res, 2006, 37(1): 11-18.【41】 Leif Hertz. Bioenergetics of cerebral ischemia: a cellular perspective[J]. Neuropharmacology, 2008, 55(3): 289-309.【42】 Huang Li, Wang Chun, Shidi Zhao, et al. PKC and CaMK-II inhibitions coordinately rescue ischemia-induced GABAergic neuron dysfunction[J]. Oncotarget, 2017, DOI: 10.18632/oncotarget.16947.【43】 Ye Hui, Shirin Jalini, Zhang Liang, et al. Early ischemia enhances action potential-dependent, spontaneous glutamatergic responses in CA1 neurons[J]. J Cereb Blood Flow Metab, 2010, 30(3): 555-565.【44】 Michelle Aarts, Mark Arundine, Michael Tymianski. Novel concepts in excitotoxic neurodegeneration after stroke[J]. Expert Rev Mol Med, 2003, 5(30): 1-22.【45】 Arabadzisz D, Freund T F. Changes in excitatory and inhibitory circuits of the rat hippocampus 12-14 months after complete forebrain ischemia[J]. Neuroscience, 1999, 92(1): 27-45.【46】 Li Huang, Chen Na, Ge Ming, et al. Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia[J]. Biochemical and Biophysical Research Communications, 2010, 394: 709-714.【47】 Li Huang, Zhao Shi-di, Lu Wei, et al., Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity[J]. PLoS One, 2015, 10(10): e0140324.【48】 Ashfaq Shuaib, Myungsook Breker-Klassen. Inhibitory mechanisms in cerebral ischemia: a brief review[J]. Neuroscience Biobehavior Review, 1997, 21(2): 219-226.【49】 Freund T F, Buzsaki G, Interneurons of the hippocampus[J]. Hippocampus, 1996, 6: 347-470.【50】 Lu Wei, Wen Bo, Zhang Feng-yu, et al. Voltage-independent sodium channels emerge for an expression of activity-induced spontaneous spikes in GABAergic neurons[J]. Mol Brain, 2014, 7(1): 38.【51】 Yu Jian-dong, Qian Hao, Wang Jin-hui. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes[J]. Mol Brain, 2012, 5(1): 26.【52】 Michelle M Aarts, Michael Tymianski. Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors[J]. Biochem Pharmacol, 2003, 66(6): 877-886.【53】 James J P Alix. Recent biochemical advances in white matter ischaemia[J]. Eur Neurol, 2006, 56(2): 74-77.【54】 Seok Joon Won, Doo Yeon Kim, Byoung Joo Gwag. Cellular and molecular pathways of ischemic neuronal death[J]. J Biochem Mol Biol, 2002, 35(1): 67-86.【55】 Mark Arundine, Michael Tymianski. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity[J]. Cell Calcium, 2003, 34(4-5): 325-337.【56】 Daniele Bano, Pierluigi Nicotera. Ca2+ signals and neuronal death in brain ischemia[J]. Stroke, 2007, 38(2 Suppl): 674-676.【57】 Kinga Szydlowska, Michael Tymianski. Calcium, ischemia and excitotoxicity[J]. Cell Calcium, 2010, 47(2): 122-129.【58】 Blaine C White, Jonathon M Sullivan, Donald J DeGracia, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury[J]. J Neurological Sciences, 2000, 179(1-2): 1-33.【59】 Teresa Carbonell, Ramon Rama. Iron, oxidative stress and early neurological deterioration in ischemic stroke[J]. Curr Med Chem, 2007, 14(8): 857-874.【60】 Forder J P, M Tymianski. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules[J]. Neuroscience, 2009, 158(1): 293-300.【61】 Schmidley J W. Free radicals in central nervous system ischemia[J]. Stroke, 1990, 21(7): 1086-1090.【62】 Lionel Carmant, Gavin Woodhal, Mohamed Ouardouz, et al. Interneuron-sepcific Ca2+ responses linked to metabotropic and ionotropic glutamate receptors in rat hippocampal slices[J]. Eur J Neurosci, 1997, 9: 1625-1635.【63】 Qi Yu-long, Li Huang, Ni Hong, et al. Intracellular Ca2+ regulates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells differently[J]. Biochemical and Biophysical Research Communications, 2009, 381(1): 129-133.【64】 Wang Jin-hui, Paul Kelly. Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1[J]. J Physiol (Lond), 2001, 533(2): 407-422.【65】 Wang Jin-hui, Zhang Mei. Differential modulation of glutamatergic and cholinergic synapses by calcineurin in hippocampal CA1 fast-spiking interneurons[J]. Brain Research, 2004, 1004(1-2): 125-135.【66】 Eduardo E Benarroch. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system[J]. Mayo Clin Proc, 2005, 80(10): 1326-1338.【67】 Paola Bezzi, Maria Domercq, Sabino Vesce, et al. Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications[J]. Prog Brain Res, 2001, 132: 255-265.【68】 Stevens B. Neuron-astrocyte signaling in the development and plasticity of neural circuits[J]. Neurosignals, 2008, 16(4): 278-288.【69】 Chen Na, Chen Shu-li,et al., The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings[J]. Biochemical and Biophysical Research Communications, 2006, 340: 151-157.【70】 Chen Na, Chen Xin, Wang Jin-hui. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding[J]. J Cell Science, 2008, 121(17): 2961-2971.【71】 Wang Jin-hui, Wei Jian, Chen Xin, et al. The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding[J]. J Cell Science, 2008, 121(17): 2951-2960.【72】 Block F. Global ischemia and behavioural deficits[J]. Prog Neurobiol, 1999, 58(3): 279-295.【73】 Suzuki R, Yamaguchi T, Kirino T, et al. The effects of 5-minute ischemia in Mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes[J]. Acta Neuropathol, 1983, 60(3-4): 207-216.【74】 Miller B, Nagy B L Finlay, Chance B, et al. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity[J]. Exp Neurol, 1993, 124(2): 326-342.【75】 Mennel H D, Sauer D Rossberg, Bielenberg G W, et al. Morphology of tissue damage due to experimental cerebral ischemia in rats[J]. Exp Pathol, 1988, 35(4): 219-230.【76】 Mennel H D, H El-Abhar, M Schilling, et al. Morphology of tissue damage caused by permanent occlusion of middle cerebral artery in mice[J]. Exp Toxicol Pathol, 2000, 52(5): 395-404.【77】 del Zoppo G J, Mabuchi T. Cerebral microvessel responses to focal ischemia[J]. J Cereb Blood Flow Metab, 2003, 23(8): 879-894.【78】 Wisniewski H M, Ryszard Pluta, Albert Lossinsky, et al. Ultrastructural studies of cerebral vascular spasm after cardiac arrest-related global cerebral ischemia in rats[J]. Acta Neuropathol, 1995, 90(5): 432-440.【79】 Brad R S Broughton, David C Reutens, Christopher G Sobey. Apoptotic mechanisms after cerebral ischemia[J]. Stroke, 2009, 40(5): e331-339.【80】 Rona G Giffard, Raymond A Swanson. Ischemia-induced programmed cell death in astrocytes[J]. Glia, 2005, 50(4): 299-306.【81】 Suresh L Mehta, Namratta Manhas, Ram Raghubir. Molecular targets in cerebral ischemia for developing novel therapeutics[J]. Brain Res Rev, 2007, 54(1): 34-66.【82】 Nakka V P, Gusain A, Mehta S L, et al. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities[J]. Mol Neurobiol, 2008, 37(1): 7-38.【83】 Chen Jun, Jin Kun-lin, Chen Min-zhi, et al. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death[J]. J Neurochem, 1997, 69(1): 232-245.【84】 Robert S B Clark, Chen Jun, Simon C Watkins, et al. Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats[J]. J Neurosci, 1997, 17(23): 9172-9182.【85】 Nakashima K. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat[J]. J Neurotrauma, 1999, 16(2): 143-151.【86】 Newcomb J K, Zhao X, Pike B R, et al. Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat[J]. Exp Neurol, 1999, 158(1): 76-88.【87】 Pang Zhen, Vinala Bondada, Tomoko Sengoku, et al. Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology[J]. J Neuropathol Exp Neurol, 2003, 62(6): 633-643.【88】 Johansen F F, Diemer N H. Temporal profile of interneuron and pyramidal cell protein synthesis in rat hippocampus following cerebral ischemia[J]. Acta Neuropathol, 1990, 81(1): 14-19.【89】 Jon R Inglefield, Christina A Wilson, Rochelle D Schwartz-Bloom。 Effect of transient cerebral ischemia on gamma-aminobutyric acidA receptor alpha 1-subunit-immunoreactive interneurons in the gerbil CA1 hippocampus[J]. Hippocampus, 1997, 7(5): 511-523.【90】 Liu Zhan, Huo Wei, Sun Wei, et al., A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR(1),(5) activation[J]. Neurol Sci, 2013, 34(7): 1189-1195.【91】 Irshad H Chaudry. Cellular mechanisms in shock and ischemia and their correction[J]. Am J Physiol, 1983, 245(2): R117-134.【92】 Dale Corbett, Suzanne Nurse. The problem of assessing effective neuroprotection in experimental cerebral ischemia[J]. Prog Neurobiol, 1998, 54(5): 531-548.【93】 Heiko J Luhmann. Ischemia and lesion induced imbalances in cortical function[J]. Prog Neurobiol, 1996, 48(2): 131-166.【94】 Kresimir Krnjevic. Electrophysiology of cerebral ischemia[J]. Neuropharmacology, 2008, 55(3): 319-333.【95】 Diego Centonze, Saulle E, Pisani A, et al. Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischemia[J]. Brain, 2001, 124(Pt9): 1855-1865.【96】 Martine Hamann, David J Rossi, Claudia Mohr, et al., The electrical response of cerebellar Purkinje neurons to simulated ischemia[J]. Brain, 2005, 128: 2408-2420.【97】 Roettger V, Lipton P. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia[J]. Neuroscinece, 1996, 75(3): 677-685.【98】 Schwartz-Bloom R D, Renu Sah. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia[J]. J Neurochem, 2001, 77(2): 353-371.【99】 Kortaro Tanaka. Alteration of second messengers during acute cerebral ischemia: adenylate cyclase, cyclic AMP-dependent protein kinase and cyclic AMP response element binding protein[J]. Progress in Neurobiology, 2001, 65(2): 173-207.【100】 Dennis W Choi. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage[J]. Trends Neurosci, 1988, 11(10): 465-469.【101】 Won, S.J., D.Y. Kim, and B.J. Gwag, Cellular and molecular pathways of ischemic neuronal death[J]. Journal of Biochemical and Molecular Biology, 2002, 35(1): 67-86.(与54重复)【102】 Inage Y W, Itoh M, Wada K, et al. Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in develoment and neonatal hypoxia-ischemic damage[J]. J Neuropathology and Experimental Neurology, 1998, 57(6): 554-562.【103】 Akihide Yamashita, Koshi Makita, Toshihiko Kuroiwa, et al. Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4[J]. Neuroscience Research, 2006, 55(3): 264-270.【104】 Block, F., Global ischemia and behavioural deficits[J]. Prog. Neurobiol., 1999, 58: 279-295.与72重复【105】 Peter Lipton. Ischemic cell death in brain neurons[J]. Physiological Review, 1999, 79(4): 1431-1568.【106】 Metha, S.L., N. Manhas, and R. Raghubir, Molecular targets in cerebral ischemia for developing novel therapeutics[J]. Brain Research Review, 2007, 54(1): 34-66.(与81重复)【107】 Rochelle D Schwartz-Bloom, Renu Sah. r-aminobutyric acid A neurotransmission and cerebral ischemia[J]. J Neurochemistry, 2001, 77: 353-371.【108】 John P Welsh, Genevieve S Yuen, Dimitris Placantonakis, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus[J]. Advanced Neurology, 2002, 89: 331-359.【109】 Zhao Shi-di, Chen Na, Yang Zhi-lai, et al. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+[J]. Biochemical and Biophysical Research Communications, 2008, 366(2): 401-407.【110】 Shepherd G M. Electronic properties of axons and dendrites[M]. From Molecular to Networks: An Introduction to Cellular and Molecular Neuroscience, J H Byrne, J L Roberts, 2004, New York: Elsevier Science (USA): 91-113.【111】 Li Y, Z Lei, Xu Z C. Enhancement of inhibitory synaptic transmission in large aspiny neurons after transient cerebral ischemia[J]. Neuroscience, 2009, 159(2): 670-681.【112】 Zhan Ren-zhi, J Victor Nadler, Rochelle D Schwartz-Bloom. Impaired firing and sodium channel function in CA1 hippocampal interneurons after transient cerebral ischemia[J]. J Cereb Blood Flow Metab, 2007, 27(8): 1444-1452.【113】 Makoto Saji, Melissa Cohen, Alan D Blau, et al. Transient forebrain ischemia induces delayed injury in the substantia nigra reticulata: degeneration of GABA neurons, compensatory expression of GAD mRNA[J]. Brain Res, 1994, 643(1-2): 234-244.【114】 Schwartz-Bloom R D, Miller K A, Evenson D A, et al. Benzodiazepines protect hippocampal neurons from degeneration after transient cerebral ischemia: an ultrastructural study[J]. Neuroscience, 2000, 98(3): 471-484.【115】 Paolo Calabresi, Letizia M Cupini, Diego Centonze, et al. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia[J]. Ann Neurol, 2003, 53(6): 693-702.【116】 Helene Benveniste, Jorgen Drejer, Arne Schousboe, et al., Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis[J]. J Neurochemistry, 1984, 43: 1369-1374.【117】 Bao W L, Williams A J, Faden A I, et al. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia[J]. Brain Res, 2001, 922(2): 173-179.【118】 Rao Muralikrishna Adibhatla, James F Hatcher, R J Dempsey. Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil[J]. Neurosci Lett, 2000, 293(1): 1-4.【119】 Kazutoshi Murotomi, Norio Takagi, Gen Takayanagi, et al. mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia[J]. J Neurochem, 2008, 105(5): 1625-1634.【120】 Tania Scartabelli, Elisabetta Gerace, Elisa Landucci, et al. Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway: a novel postconditioning strategy? [J] Neuropharmacology, 2008, 55(4): 509-516.【121】 Norio Takagi, Shintaro Besshoh, Hirotsugu Morita, et al. Metabotropic glutamate mGlu5 receptor-mediated serine phosphorylation of NMDA receptor subunit NR1 in hippocampal CA1 region after transient global ischemia in rats[J]. Eur J Pharmacol, 2010, 644(1-3): 96-100.【122】 Uta Strasser, Doug Lobner, M Margarita Behrens, et al. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures[J]. Eur J Neurosci, 1998, 10(9): 2848-55.【123】 Pellegrini-Giampietro D E, Cozzi A, Peruginelli F, et al. 1-Aminoindan-1,5-dicarboxylic acid and (S)-(+)-2-(3'-carboxybicyclo[1.1.1] pentyl)-glycine, two mGlu1 receptor-preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischaemia[J]. Eur J Neurosci, 1999, 11(10): 3637-3647.【124】 Claudia G Werner, Tania Scartabelli, Tristano Pancani, et al. Differential role of mGlu1 and mGlu5 receptors in rat hippocampal slice models of ischemic tolerance[J]. Eur J Neurosci, 2007, 25(12): 3597-3604.【125】 Valeria Bruno, Giuseppe Battaglia, Agatta Copani, et al. An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors[J]. Eur J Neurosci, 2001, 13(8): 1469-1478.【126】 Agnes Simonyi, J P Zhang, Grace Sun, Changes in mRNA levels for group I metabotropic glutamate receptors following in utero hypoxia-ischemia[J]. Brain Res Dev Brain Res, 1999, 112(1): 31-37.【127】 Gerald A Dienel, Leif Hertz. Astrocytic contributions to bioenergetics of cerebral ischemia[J]. Glia, 2005, 50(4): 362-388.【128】 Michele Zoli, Giuseppe Biagini, Rosaria Ferrari, et al. Neuron-glia cross talk in rat striatum after transient forebrain ischemia[J]. Adv Exp Med Biol, 1997, 429: 55-68.【129】 David J Rossi, James D Brady, Claudia Mohr. Astrocyte metabolism and signaling during brain ischemia[J]. Nat Neurosci, 2007, 10(11): 1377-1386.【130】 Sonia Villapol, Antoinette Gelot, Sylvain Renolleau, et al. Astrocyte responses after neonatal ischemia: the yin and the yang[J]. Neuroscientist, 2008, 14(4): 339-344.【131】 Torben Bruhn, Line M Levy, Mogens Nielsen, et al. Ischemia induced changes in expression of the astrocyte glutamate transporter GLT1 in hippocampus of the rat[J]. Neurochem Int, 2000, 37(2-3): 277-285.【132】 Camacho A, Massieu L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death[J]. Arch Med Res, 2006, 37(1): 11-18.【133】 McIver S R, Muccigrosso M, Gonzales E R, et al. Oligodendrocyte degeneration and recovery after focal cerebral ischemia[J]. Neuroscience, 2010, 169(3): 1364-1375.【134】 Bruce E McKay, Ray W Turner. Physiological and morphological development of the rat cerebellar Purkinje cell[J]. J Physiology (London), 2005, 567(Pt3): 829-850.【135】 Chris J McBain, Andre Fisahn. Interneurons unbound[J]. Nature Reviews Neuroscience, 2001, 2(1): 11-23.【136】 Ni Hong, Huang Li, Chen Na, et al. Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit[J]. PLoS ONE, 2010, 5(10): e13736.【137】 Peter Somogyi, Thomas Klausberger. Defined types of cortical interneurone structure space and spike timing in the hippocampus[J]. J Physiology (London), 2005, 562(1): 9-29.【138】 Michael Wehr, Anthony M Zador. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex[J]. Nature, 2003, 426: 442-446.【139】 Chen Na, Zhu Yan, Gao Xin, et al. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons[J]. Biochemical and Biophysical Research Communications, 2006, 346(1): 281-287.【140】 Chen Na, Chen Xin, Yu Jian-dong, et al. After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels[J]. Biochemical and Biophysical Research Communications, 2006, 346(3): 938-945.【141】 Chen Na, Yu Jian-dong, Qian Hao, et al. Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons[J]. PLoS ONE, 2010, 5(7): e11868 【142】 Raphael Hourez, Karima Azdad, Gilles Vanwalleghem, et al. Activation of protein kinase C and inositol 1,4,5-triphosphate receptors antagonistically modulate voltage-gated sodium channels in striatal neurons[J]. Brain Res, 2005, 1059(2): 189-96.【143】 Li Ming, James W West, Yvonne Lai, et al. Functional modulation of brain sodium channels by cAMP-dependent phosphorylation[J]. Neuron, 1992, 8(6): 1151-1159.【144】 Hao Zhi-bin, Pei Dong-sheng, Guan Qiu-hua, et al. Calcium/calmodulin-dependent protein kinase II (CaMKII), through NMDA receptors and L-Voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus[J]. Brain Res Mol Brain Res, 2005, 140(1-2): 55-62.【145】 Hiroshi Onodera, Yasundo Yamasaki, Kyuya Kogure, et al. Calcium/calmodulin-dependent protein kinase II and protein phosphatase 2B (calcineurin) immunoreactivity in the rat hippocampus long after ischemia[J]. Brain Res, 1995, 684(1): 95-98.【146】 Teresa Zalewska, B Zablocka, Krystyna Domanska-Janik. Changes of Ca2+/calmodulin-dependent protein kinase-II after transient ischemia in gerbil hippocampus[J]. Acta Neurobiol Exp (Wars), 1996, 56(1): 41-48.【147】 Hubert Monnerie, Peter D Le Roux. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro[J]. Exp Neurol, 2007, 205(2): 367-382.【148】 Gabriella Nyitrai, Katalin A Kekesi, Gabor Juhasz. Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements[J]. Curr Top Med Chem, 2006, 6(10): 935-940.【149】 Li Hhi-ling, Ruth E Siegel, Rochelle D Schwartz. Rapid decline of GABAA receptor subunit mRNA expression in hippocampus following transient cerebral ischemia in the gerbil[J]. Hippocampus, 1993, 3(4): 527-537.【150】 Norio Akaike. Time-dependent rundown of GABA response in mammalian cns neuron during experimental anoxia[J]. Obes Res, 1995, 3(Suppl 5): 769S-777S.【151】 Zhan Ren-zhi, J Victor Nadler, Rochelle D Schwartz-Bloom. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia[J]. J Cereb Blood Flow Metab, 2006, 26(1): 112-24.【152】 Tae-Cheon Kang, Seung-Kook Park, In-koo Hwang, et al. Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia[J]. Brain Res, 2002, 944(1-2): 10-18.【153】 Li Yan, Glenn Dave Blanco, Lei Zhi-gang, et al. Increased GAD expression in the striatum after transient cerebral ischemia[J]. Mol Cell Neurosci, 2010, 45(4): 370-377.【154】 Raghu Vemuganti. Decreased expression of vesicular GABA transporter, but not vesicular glutamate, acetylcholine and monoamine transporters in rat brain following focal ischemia[J]. Neurochem Int, 2005, 47(1-2): 136-142.【155】 Liang R, Pang Z P, Deng P, et al. Transient enhancement of inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons after cerebral ischemia[J]. Neuroscience, 2009, 160(2): 412-418.【156】 Maxim Dobretsov, Joseph R Stimers. Neuronal function and alpha3 isoform of the Na/K-ATPase[J]. Front Biosci, 2005, 10(1-3): 2373-2396.【157】 Jeffrey Magee, Dax Hoffman, Costa Colbert, et al. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons[J]. Annu Rev Physiol, 1998, 60: 327-346.【158】 Pierre J Magistretti. Neuron-glia metabolic coupling and plasticity[J]. J Exp Biol, 2006, 209(Pt 12): 2304-2311.【159】 Paul A Rutecki. Neuronal excitability: voltage-dependent currents and synaptic transmission[J]. J Clin Neurophysiol, 1992, 9(2): 195-211.【160】 Sheridan L Swope, Stephen J Moss, Craig D Blackstone, et al. Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity[J]. FASEB J, 1992, 6(8): 2514-23.【161】 Tanaka E, Yamamoto S, Yoshihisa Kudo, et al. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro[J]. J Neurophysiol, 1997, 78(2): 891-902.【162】 Siesjo B K, Anders Ekholm, Ken-ichiro Katsura, et al. Acid-base changes during complete brain ischemia[J]. Stroke, 1990, 21(11 Suppl): III194-9.【163】 Simon R, Xiong Z. Acidotoxicity in brain ischemia[J]. Biochem Soc Trans, 2006, 34(Pt6): 1356-1361.【164】 Shono Yuji, Masahiro Kamouchi, Takanari Kitazono, et al. Change in intracellular pH causes the toxic Ca2+ entry via NCX1 in neuron- and glia-derived cells[J]. Cell Mol Neurobiol, 2010, 30(3): 453-60.【165】 Zhou Chun-yi, Xiao Cheng, Deng Chun-yu, et al. Extracellular proton modulates GABAergic synaptic transmission in rat hippocampal CA3 neurons[J]. Brain Res, 2007, 1145: 213-220.【166】 Dwight E Bergles, Craig E Jahr. Synaptic activation of glutamate transporters in hippocampal astrocytes[J]. Neuron, 1997, 19: 1297-1308.【167】 Giorgio A Ascoli, Lidia Alonso-Nanclares, Stewart A Anderson, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex[J]. Nat Rev Neurosci, 2008, 9(7): 557-68.【168】 Thomas Klausberger, Peter Somogyi. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations[J]. Science, 2008, 321(5885): 53-57.【169】 Changhan Ouyang, Guo Lian-jun, Lu Qing, et al., Enhanced activity of GABA receptors inhibits glutamate release induced by focal cerebral ischemia in rat striatum[J]. Neurosci Lett, 2007, 420(2): 174-178.【170】 Cinzia Costa, Giorgia Leone, Emilia Saulle, et al., Coactivation of GABA(A) and GABA(B) receptor results in neuroprotection during in vitro ischemia[J]. Stroke, 2004, 35(2): 596-600.【171】 Johansen F F, N H Diemer, Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells[J]. Acta Neurol Scand, 1991, 84(1): 1-6.【172】 Obrenovitch T P. Molecular physiology of preconditioning-induced brain tolerance to ischemia[J]. Physiol Rev, 2008, 88(1): 211-247. |
[1] | 苗明三,彭孟凡,方晓艳,贾佼佼,白明. 大血藤总酚酸对局灶性脑缺血再灌注大鼠脑组织氧化应激水平和能量代谢的影响[J]. 神经药理学报, 2019, 9(1): 1-5. |
[2] | 魏珍珍,方晓艳,白明,苗明三. 基于星形胶质细胞的脑缺血损伤治疗研究进展[J]. 神经药理学报, 2019, 9(1): 36-43. |
[3] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[4] | 孙毅,谭博,苏瑞斌. 偏向性配体——阿片类镇痛药设计新思路[J]. 神经药理学报, 2018, 8(2): 1-7. |
[5] | 郭海彪,徐科一,林娟,王德勤,覃仁安. 复方丹参片对老年痴呆症合并焦虑障碍的研究[J]. 神经药理学报, 2018, 8(2): 32-32. |
[6] | 曾菊,程斌,程肖蕊,周文霞,张永祥. 基于LPS 诱导小鼠炎症模型的LW-AFC 抗炎作用研究[J]. 神经药理学报, 2018, 8(2): 49-49. |
[7] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[8] | 杜冠华,张雯,杜立达,马寅仲,李莉,王月华. 抗脑缺血药物研发现状分析与策略研究[J]. 神经药理学报, 2018, 8(1): 1-8. |
[9] | 昝桂影,孙翔, 李庆林, 刘景根 . κ阿片受体在抑郁中的作用及机制研究进展[J]. 神经药理学报, 2018, 8(1): 54-64. |
[10] | 李江曼,王一頔,王风萍,李炜. 脑缺血再灌注损伤及其星形胶质细胞相关机制研究进展[J]. 神经药理学报, 2017, 7(6): 50-59. |
[11] | 詹佳虹,简文轩,万江帆,等. 天然化合物治疗缺血性脑卒中抗氧化作用机制的研究进展[J]. 神经药理学报, 2017, 7(6): 60-64. |
[12] | 庞学波,薛茜,邹玉安. 人血浆脂蛋白磷脂酶A2 与缺血性脑卒中的研究进展[J]. 神经药理学报, 2017, 7(4): 31-35. |
[13] | 杨杰,刘富甲,田子夏,王乐乐,谢欣梅,庞晓斌. 脉络宁对MCAO 大鼠的神经保护作用及其抗氧化机制研究[J]. 神经药理学报, 2017, 7(4): 1-7. |
[14] | 王小川. SET 核运输障碍机制研究[J]. 神经药理学报, 2017, 7(2): 14-14. |
[15] | 陈郁婷,黄霄天,刘幸,周虎,章海燕. 铁过载对神经元功能的调控作用研究[J]. 神经药理学报, 2017, 7(2): 15-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||