
神经药理学报 ›› 2015, Vol. 5 ›› Issue (2): 38-45.
王浩,杜贯涛, 刘广军,洪浩
出版日期:2015-04-26
发布日期:2015-07-06
通讯作者:
洪浩,男,博士,教授,博士生导师;研究方向:神经与内分泌药理;Tel:+86-025-86185227,E-mail:honghao@cpu.edu.cn
作者简介:王浩,男,硕士研究生;研究方向:神经药理学;Tel:+86-025-86185227,E-mail:wanghao890625@126.com
基金资助:国家自然科学基金面上项目(No. 81273497)
WANG Hao, DU Guan-tao, LIU Guang-jun, HONG Hao
Online:2015-04-26
Published:2015-07-06
Contact:
洪浩,男,博士,教授,博士生导师;研究方向:神经与内分泌药理;Tel:+86-025-86185227,E-mail:honghao@cpu.edu.cn
About author:王浩,男,硕士研究生;研究方向:神经药理学;Tel:+86-025-86185227,E-mail:wanghao890625@126.com
Supported by:国家自然科学基金面上项目(No. 81273497)
摘要: 血脑脊液屏障(blood cerebrospinal fluid barrier,blood-CSF barrier)是介于外周和中枢神经系统之间的一道生理屏障,对维持中枢神经系统的稳态起着重要作用。研究表明,血脑脊液屏障与阿尔茨海默病(Alzheimer’s disease,AD)的发生发展密切相关。本文重点论述血脑脊液屏障晚期糖基化终产物受体(receptor for advanced glycation end products,RAGE)/低密度脂蛋白受体相关蛋白1(low density lipoprotein receptor-related protein 1,LRP1)受体转运系统及以血脑脊液屏障为核心组分的神经血管单元(neurovascular unit,NVU)介导的中枢β-淀粉样蛋白(β-amyloid protein,Aβ)水平调控与AD发病机制的关系,为AD防治提供新思路。
王浩,杜贯涛, 刘广军,洪浩. 血脑脊液屏障RAGE/LRP1转运体及神经血管单元与阿尔茨海默病关系的研究进展[J]. 神经药理学报, 2015, 5(2): 38-45.
WANG Hao, DU Guan-tao, LIU Guang-jun, HONG Hao. Research Progress on RAGE/LRP1 Transporters At the Blood-Brain Barrier and the Neurovascular Unit in Alzheimer’s Disease[J]. Acta Neuropharmacologica, 2015, 5(2): 38-45.
| [1] Henry W Querfurth, Frank M LaFerla. Alzheimer's Disease [J]. N Engl J Med, 2010, 362(4):329-344.[2] Jean Francois Dartigues . Alzheimer's disease: a global challenge for the 21st century [J]. Lancet Neurol, 2009, 8(12):1082-1083.[3] David A Bennett, Yu Lei, Yang Jing-yun, et al. Epigenomics of Alzheimer's disease [J]. Transl Res, 2015, 165(1):200-220.[4] Ignacio F Mata, James Leverenz, Daniel Weintraub, et al. APOE, MAPT, and SNCA genes and cognitive performance in Parkinson disease [J]. JAMA Neurol, 2014, 71(11):1405-1412.[5] Moses N Wainaina, Chen Zhi-chun, Zhong Chun-jiu. Environmental factors in the development and progression of late-onset alzheimer'sdisease [J]. Neurosci Bull, 2014, 30(2):253-270.[6] Irwin David J, Cohen Todd J, Grossman Murray, et al. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies [J]. Brain, 2012, 135(Pt 3):807-818.[7] S Sakura Minami, Min Sang-Won, Grietje Krabbe, et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models [J]. Nat Med, 2014, 20(10):1157-1164.[8] Tara L Spires-Jones, Bradley T Hyman. The intersection of amyloid beta and tau at synapses in Alzheimer's disease [J]. Neuron, 2014, 82(4):756-771.[9] Min-Kyoo Shin, Hong-Gi Kim, Seung-Hyun Baek, et al. Neuropep-1 ameliorates learning and memory deficits in an Alzheimer's disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques [J]. Neurobiol Aging, 2014, 35(5):990-1001.[10] Mar Cuadrado-Tejedor, Ana Ricobaraza, Diana Frechilla, et al. Chronic mild stress accelerates the onset and progression of the Alzheimer's disease phenotype in Tg2576 mice [J]. J Alzheimers Dis, 2012, 28(3):567-578. [11] Christopher Exley, Emily House, Anthony Polwart, et al. Brain burdens of aluminum, iron, and copper and their relationships with amyloid-β pathology in 60 human brains [J]. J Alzheimers Dis, 2012, 31(4):725-730.[12] Ignacio Pedrós, Dmitry Petrov, Michael Allgaier, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease [J]. Biochim Biophys Acta, 2014, 1842(9):1556-1566.[13] Cristian Ripoli, Sara Cocco, Donatella Li Puma, et al. Intracellular accumulation of amyloid-β (Aβ) protein plays a major role in Aβ-induced alterations of glutamatergic synaptic transmission and plasticity [J]. J Neurosci, 2014, 34(38):12893-12903.[14] Cao Lu-xiang, Benjamin R Schrank, Steve Rodriguez, et al. Aβ alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo [J]. Nat Commun, 2012, 3:1009. [15] Michael A Castello, Salvador Soriano. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis [J]. Ageing Res Rev, 2014, 13:10-12.[16] Michelle A Erickson, William A Banks. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease [J]. J Cereb Blood Flow Metab, 2013, 33(10):1500-1513.[17] Birgit Obermeier, Richard Daneman, Richard M Ransohoff. Development, maintenance and disruption of the blood-brain barrier [J]. Nat Med, 2013, 19(12):1584-1596. [18] William M Pardridge, Triguero D, Yang J, et al. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier [J]. J Pharmacol Exp Ther, 1990, 253(2):884-891.[19] Maria Feldmann, Marie Claude Asselin, Joan Liu, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study [J]. Lancet Neurol, 2013, 12(8):777-785.[20] Ronit Shaltiel-Karyo, Moran Frenkel-Pinter, Edward Rockenstein, et al. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD) [J]. J Biol Chem, 2013, 288(24):17579-17588. [21] Sun-Young Kook, Hyun Seok Hong, Minho Moon, et al. Disruption of blood-brain barrier in Alzheimer disease pathogenesis [J]. Tissue Barriers, 2013, 1(2):e23993. [22] Raj N Kalaria. Vascular factors in Alzheimer's disease [J]. Int Psychogeriatr, 2003, 15(Suppl 1): 47-52.[23] Paul A Yates, Patricia Desmond, Pramit M Phal, et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease [J]. Neurology, 2014, 82(14):1266-1273.[24] Anika M S Hartz, Bjorn Bauer, Emma L B Soldner, et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy [J]. Stroke, 2012, 43(2):514-523.[25] Honjo K, Black S E, Verhoeff N P. Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade [J]. Can J Neurol Sci, 2012, 39(6):712-728.[26] Rashid Deane, Du Yan Shi, Ram Kumar Submamaryan, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain [J]. Nat Med, 2003, 9(7):907-913.[27] Masayoshi Shibata, Shinya Yamada, S Ram Kumar, et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier [J]. J Clin Invest, 2000, 106(12):1489-1499.[28] Douglas Galasko, Joanne Bell, Jessica Y Mancuso, et al. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease [J]. Neurology, 2014, 82(17):1536-1542. [29] Michael O Chaney, W Blaine Stine, Tyler A Kokjohn, et al. RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling [J]. Biochim Biophys Acta, 2005, 1741(1-2):199-205.[30] Ottavio Arancio, Zhang Hui-ping, Chen Xi, et al. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice [J]. EMBO J, 2004, 23(20): 4096-4105.[31] Fumitaka Shimizu, Yasuteru Sano, Osamu Tominaga, et al. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro [J]. Neurobiol Aging, 2013, 34(7):1902-1912.[32] Nicola Origlia, Massimo Righi, Simona Capsoni, et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction [J]. J Neurosci, 2008, 28(13):3521-3530.[33] Alexander Slowik, Julika Merres, Anne Elfgen, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells [J]. Mol Neurodegener, 2012, 7:55. [34] Bjoern Von Einem, Daniel Schwanzar, Florian Rehn, et al. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1 [J]. Exp Neurol, 2010, 225(1):85-93.[35] Alberto Lleó, Elaine Waldron, Christine A F von Arnim, et al. Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase [J]. J Biol Chem, 2005, 280(29):27303-27309. [36] Furu Liang, Jia Jian-ping, Wang Shu-ying, et al. Decreased plasma levels of soluble low density lipoprotein receptor-related protein-1 (sLRP) and the soluble form of the receptor for advanced glycation end products (sRAGE) in the clinical diagnosis of Alzheimer's disease [J]. J Clin Neurosci, 2013, 20(3):357-361.[37] Berislav V Zlokovic, Rashid Deane, Abhay P Sagare, et al. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain [J]. J Neurochem, 2010, 115(5):1077-1089.[38] Philip Verghese, Joseoh M Castellano, Kanchan Garai, et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions [J]. Proc Natl Acad Sci USA, 2013, 110(19):E1807-16. [39] Rashid Deane, Abhay Sagare, Katie Hamm, et al. ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain [J]. Clinical Investigation, 2008, 118(12):4002-4013.[40] Takahisa Kanekiyo, John R Cirrito, Liu Chia-Chen, et al. Neuronal clearance of amyloid-β by endocytic receptor LRP1 [J]. J Neurosci, 2013, 33(49):19276-19283. [41] Berislav V Zlokovic. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders [J]. Nat Rev Neurosci, 2011, 12(12):723-738. [42] Constantin Bouras, Eniko Kövari, Francois Herrmann, et al. Stereologic analysis of microvascular morphology in the elderly: Alzheimer disease pathology and cognitive status [J]. J Neuropathol Exp Neurol, 2006, 65(3):235-244.[43] Gregory J Del Zoppo. Stroke and neurovascular protection [J]. N Engl J Med, 2006, 354(6):553-555.[44] Cárdenas A, Kong M, Alvarez A, et al. Signaling pathways involved in neuron-astrocyte adhesion and migration [J]. Curr Mol Med, 2014, 14(2):275-290.[45] Koji Ishitsuka, Teteuro Ago, Koichi Arimura, et al. Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection [J]. Microvasc Res, 2012, 83(3):352-359.[46] Markus Ramsauer, Dorothee Krause, Rolf Dermietzel. Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes [J]. FASEB J, 2002, 16(10):1274-1276.[47] Yoshiaki Itoh, Haruki Toriumi, Satoshi Yamada, et al. Astrocytes and pericytes cooperatively maintain a capillary-like structure composed of endothelial cells on gel matrix [J]. Brain Res, 2011, 1406:74-83. [48] Takayuki Nakagomi, Shuji Kubo, Akiko Nakano-Doi, et al. Brain Vascular Pericytes following Ischemia have Multipotential Stem Cell Activity to Differentiate into Neural and Vascular Lineage Cells [J]. Stem Cells, 2015, doi: 10.1002/stem.1977.[49] Fiona M Laird, Cai Huai-bin, Alena Savonenko, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions [J]. J Neurosci, 2005, 25(50):11693-11709.[50] Stephen F Carter, Michael Scholl, Ove Almkvist, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-Ldeprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG [J]. J Nucl Med, 2012, 53(1):37-46. [51] Arundhati Jana, Kalipada Pahan. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer's disease [J]. J Neurosci, 2010, 30(38):12676-12689.[52] Li C, Zhao R, Gao K, et al. Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease [J]. Curr Alzheimer Res, 2011, 8(1):67-80.[53] Natalia N Nalivaeva, Caroline Beckett, Nikolai D Belyaev, et al. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? [J]. J Neurochem, 2012, 120(Suppl 1):167-185. [54] Killick R, Ribe E M, Al-Shawi R, et al. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway [J]. Mol Psychiatry, 2014, 19(1):88-98. [55] Yao Jun, Du Heng, Yan Shi-qiang, et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease [J]. J Neurosci, 2011, 31(6):2313-2320.[56] Sandra D Mulder, Robert Veerhuis, Marinus A Blankenstein, et al. The effect of amyloid associated proteins on the expression of genes involved in amyloid-beta clearance by adult human astrocytes [J]. Exp Neurol, 2012, 233(1):373-379.[57] Eric Karran, John Hardy. Antiamyloid therapy for Alzheimer’s disease — are we on the right road? [J]. N Engl J Med, 2014, 370(4):377-378. |
| [1] | 张园青, 林珏, 黄莉. 维生素D 对阿尔茨海默病细胞模型中 DNA 甲基化作用研究[J]. 神经药理学报, 2024, 14(6): 39-. |
| [2] | 姚思凡, 张鑫, 沈丽霞. Tau 蛋白在阿尔茨海默病中对线粒体的影响[J]. 神经药理学报, 2024, 14(4): 54-. |
| [3] | 王天旭, 刘慈, 崔永元, 张鑫, 吴苗苗, 沈丽霞. 基于网络药理学和分子对接探究槲皮素治疗阿尔茨海默病的作用机制[J]. 神经药理学报, 2024, 14(2): 31-. |
| [4] | 朱静怡, 樊建春, 禹爱梅. 普罗布考在保护神经系统中的研究现状[J]. 神经药理学报, 2023, 13(6): 50-. |
| [5] | 张晓然, 刘思远, 杨浩然, 郭轩桐, 范乐豪, 李金达, 金戈, 卢方晋, 朱琳. 基于网络药理学探究紫檀芪对阿尔茨海默病的作用及分子机制[J]. 神经药理学报, 2023, 13(5): 1-. |
| [6] | 郭宝, 刘子铭, 景永帅, 张丹参. Wnt信号通路与阿尔茨海默病的相关性及靶点研究[J]. 神经药理学报, 2023, 13(1): 56-. |
| [7] | 司文英, 侯宇清, 孙晓静, 孟宪勇, 董晓华. 基因治疗阿尔茨海默病[J]. 神经药理学报, 2022, 12(6): 51-56. |
| [8] | 张志清, 张永财, 刘林轩, 李壬清, 刘济嘉, 杜景考, 姜北, 魏会平, 苏立宁. 外泌体ceRNA调控网络与阿尔茨海默病相关性的生物信息学分析[J]. 神经药理学报, 2022, 12(4): 23-40. |
| [9] | 蔡雨珊, 赵帅. PPARβ/δ在神经退行性疾病中的研究进展[J]. 神经药理学报, 2022, 12(4): 41-48. |
| [10] | 吕雪盈, 章正, 罗焕敏. 血脑屏障与阿尔茨海默病[J]. 神经药理学报, 2022, 12(4): 58-64. |
| [11] | 戴月英, 赵雨薇, 姚思凡, 等. 雌激素介导线粒体途径的神经保护作用研究[J]. 神经药理学报, 2021, 11(3): 33-42. |
| [12] | 丁圣恺, 刘倩倩, 刘新杨, 商亚珍. 成年海马神经发生与阿尔茨海默病的关系[J]. 神经药理学报, 2020, 10(6): 48-53. |
| [13] | 黄颖, 霍艳丽, 明越, 郝军荣. 高脂饮食与阿尔茨海默病的研究进展[J]. 神经药理学报, 2020, 10(6): 54-59. |
| [14] | 谢彬, 黄志源, 林多朵, 杨福龙, 谢奕彬. 针药结合干预阿尔茨海默病抑郁症状效果分析[J]. 神经药理学报, 2020, 10(5): 5-8. |
| [15] | 赵雨薇, 甄艳杰, 戴月英, 沈丽霞. 槲皮素对阿尔茨海默症神经保护作用研究[J]. 神经药理学报, 2020, 10(5): 55-64. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||