[1] Henry W Querfurth, Frank M LaFerla. Alzheimer's Disease [J]. N Engl J Med, 2010, 362(4):329-344.[2] Jean Francois Dartigues . Alzheimer's disease: a global challenge for the 21st century [J]. Lancet Neurol, 2009, 8(12):1082-1083.[3] David A Bennett, Yu Lei, Yang Jing-yun, et al. Epigenomics of Alzheimer's disease [J]. Transl Res, 2015, 165(1):200-220.[4] Ignacio F Mata, James Leverenz, Daniel Weintraub, et al. APOE, MAPT, and SNCA genes and cognitive performance in Parkinson disease [J]. JAMA Neurol, 2014, 71(11):1405-1412.[5] Moses N Wainaina, Chen Zhi-chun, Zhong Chun-jiu. Environmental factors in the development and progression of late-onset alzheimer'sdisease [J]. Neurosci Bull, 2014, 30(2):253-270.[6] Irwin David J, Cohen Todd J, Grossman Murray, et al. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies [J]. Brain, 2012, 135(Pt 3):807-818.[7] S Sakura Minami, Min Sang-Won, Grietje Krabbe, et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models [J]. Nat Med, 2014, 20(10):1157-1164.[8] Tara L Spires-Jones, Bradley T Hyman. The intersection of amyloid beta and tau at synapses in Alzheimer's disease [J]. Neuron, 2014, 82(4):756-771.[9] Min-Kyoo Shin, Hong-Gi Kim, Seung-Hyun Baek, et al. Neuropep-1 ameliorates learning and memory deficits in an Alzheimer's disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques [J]. Neurobiol Aging, 2014, 35(5):990-1001.[10] Mar Cuadrado-Tejedor, Ana Ricobaraza, Diana Frechilla, et al. Chronic mild stress accelerates the onset and progression of the Alzheimer's disease phenotype in Tg2576 mice [J]. J Alzheimers Dis, 2012, 28(3):567-578. [11] Christopher Exley, Emily House, Anthony Polwart, et al. Brain burdens of aluminum, iron, and copper and their relationships with amyloid-β pathology in 60 human brains [J]. J Alzheimers Dis, 2012, 31(4):725-730.[12] Ignacio Pedrós, Dmitry Petrov, Michael Allgaier, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease [J]. Biochim Biophys Acta, 2014, 1842(9):1556-1566.[13] Cristian Ripoli, Sara Cocco, Donatella Li Puma, et al. Intracellular accumulation of amyloid-β (Aβ) protein plays a major role in Aβ-induced alterations of glutamatergic synaptic transmission and plasticity [J]. J Neurosci, 2014, 34(38):12893-12903.[14] Cao Lu-xiang, Benjamin R Schrank, Steve Rodriguez, et al. Aβ alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo [J]. Nat Commun, 2012, 3:1009. [15] Michael A Castello, Salvador Soriano. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis [J]. Ageing Res Rev, 2014, 13:10-12.[16] Michelle A Erickson, William A Banks. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease [J]. J Cereb Blood Flow Metab, 2013, 33(10):1500-1513.[17] Birgit Obermeier, Richard Daneman, Richard M Ransohoff. Development, maintenance and disruption of the blood-brain barrier [J]. Nat Med, 2013, 19(12):1584-1596. [18] William M Pardridge, Triguero D, Yang J, et al. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier [J]. J Pharmacol Exp Ther, 1990, 253(2):884-891.[19] Maria Feldmann, Marie Claude Asselin, Joan Liu, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study [J]. Lancet Neurol, 2013, 12(8):777-785.[20] Ronit Shaltiel-Karyo, Moran Frenkel-Pinter, Edward Rockenstein, et al. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD) [J]. J Biol Chem, 2013, 288(24):17579-17588. [21] Sun-Young Kook, Hyun Seok Hong, Minho Moon, et al. Disruption of blood-brain barrier in Alzheimer disease pathogenesis [J]. Tissue Barriers, 2013, 1(2):e23993. [22] Raj N Kalaria. Vascular factors in Alzheimer's disease [J]. Int Psychogeriatr, 2003, 15(Suppl 1): 47-52.[23] Paul A Yates, Patricia Desmond, Pramit M Phal, et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease [J]. Neurology, 2014, 82(14):1266-1273.[24] Anika M S Hartz, Bjorn Bauer, Emma L B Soldner, et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy [J]. Stroke, 2012, 43(2):514-523.[25] Honjo K, Black S E, Verhoeff N P. Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade [J]. Can J Neurol Sci, 2012, 39(6):712-728.[26] Rashid Deane, Du Yan Shi, Ram Kumar Submamaryan, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain [J]. Nat Med, 2003, 9(7):907-913.[27] Masayoshi Shibata, Shinya Yamada, S Ram Kumar, et al. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier [J]. J Clin Invest, 2000, 106(12):1489-1499.[28] Douglas Galasko, Joanne Bell, Jessica Y Mancuso, et al. Clinical trial of an inhibitor of RAGE-Aβ interactions in Alzheimer disease [J]. Neurology, 2014, 82(17):1536-1542. [29] Michael O Chaney, W Blaine Stine, Tyler A Kokjohn, et al. RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling [J]. Biochim Biophys Acta, 2005, 1741(1-2):199-205.[30] Ottavio Arancio, Zhang Hui-ping, Chen Xi, et al. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice [J]. EMBO J, 2004, 23(20): 4096-4105.[31] Fumitaka Shimizu, Yasuteru Sano, Osamu Tominaga, et al. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro [J]. Neurobiol Aging, 2013, 34(7):1902-1912.[32] Nicola Origlia, Massimo Righi, Simona Capsoni, et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction [J]. J Neurosci, 2008, 28(13):3521-3530.[33] Alexander Slowik, Julika Merres, Anne Elfgen, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells [J]. Mol Neurodegener, 2012, 7:55. [34] Bjoern Von Einem, Daniel Schwanzar, Florian Rehn, et al. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1 [J]. Exp Neurol, 2010, 225(1):85-93.[35] Alberto Lleó, Elaine Waldron, Christine A F von Arnim, et al. Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase [J]. J Biol Chem, 2005, 280(29):27303-27309. [36] Furu Liang, Jia Jian-ping, Wang Shu-ying, et al. Decreased plasma levels of soluble low density lipoprotein receptor-related protein-1 (sLRP) and the soluble form of the receptor for advanced glycation end products (sRAGE) in the clinical diagnosis of Alzheimer's disease [J]. J Clin Neurosci, 2013, 20(3):357-361.[37] Berislav V Zlokovic, Rashid Deane, Abhay P Sagare, et al. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain [J]. J Neurochem, 2010, 115(5):1077-1089.[38] Philip Verghese, Joseoh M Castellano, Kanchan Garai, et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions [J]. Proc Natl Acad Sci USA, 2013, 110(19):E1807-16. [39] Rashid Deane, Abhay Sagare, Katie Hamm, et al. ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain [J]. Clinical Investigation, 2008, 118(12):4002-4013.[40] Takahisa Kanekiyo, John R Cirrito, Liu Chia-Chen, et al. Neuronal clearance of amyloid-β by endocytic receptor LRP1 [J]. J Neurosci, 2013, 33(49):19276-19283. [41] Berislav V Zlokovic. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders [J]. Nat Rev Neurosci, 2011, 12(12):723-738. [42] Constantin Bouras, Eniko Kövari, Francois Herrmann, et al. Stereologic analysis of microvascular morphology in the elderly: Alzheimer disease pathology and cognitive status [J]. J Neuropathol Exp Neurol, 2006, 65(3):235-244.[43] Gregory J Del Zoppo. Stroke and neurovascular protection [J]. N Engl J Med, 2006, 354(6):553-555.[44] Cárdenas A, Kong M, Alvarez A, et al. Signaling pathways involved in neuron-astrocyte adhesion and migration [J]. Curr Mol Med, 2014, 14(2):275-290.[45] Koji Ishitsuka, Teteuro Ago, Koichi Arimura, et al. Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection [J]. Microvasc Res, 2012, 83(3):352-359.[46] Markus Ramsauer, Dorothee Krause, Rolf Dermietzel. Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes [J]. FASEB J, 2002, 16(10):1274-1276.[47] Yoshiaki Itoh, Haruki Toriumi, Satoshi Yamada, et al. Astrocytes and pericytes cooperatively maintain a capillary-like structure composed of endothelial cells on gel matrix [J]. Brain Res, 2011, 1406:74-83. [48] Takayuki Nakagomi, Shuji Kubo, Akiko Nakano-Doi, et al. Brain Vascular Pericytes following Ischemia have Multipotential Stem Cell Activity to Differentiate into Neural and Vascular Lineage Cells [J]. Stem Cells, 2015, doi: 10.1002/stem.1977.[49] Fiona M Laird, Cai Huai-bin, Alena Savonenko, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions [J]. J Neurosci, 2005, 25(50):11693-11709.[50] Stephen F Carter, Michael Scholl, Ove Almkvist, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-Ldeprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG [J]. J Nucl Med, 2012, 53(1):37-46. [51] Arundhati Jana, Kalipada Pahan. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer's disease [J]. J Neurosci, 2010, 30(38):12676-12689.[52] Li C, Zhao R, Gao K, et al. Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease [J]. Curr Alzheimer Res, 2011, 8(1):67-80.[53] Natalia N Nalivaeva, Caroline Beckett, Nikolai D Belyaev, et al. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? [J]. J Neurochem, 2012, 120(Suppl 1):167-185. [54] Killick R, Ribe E M, Al-Shawi R, et al. Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway [J]. Mol Psychiatry, 2014, 19(1):88-98. [55] Yao Jun, Du Heng, Yan Shi-qiang, et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease [J]. J Neurosci, 2011, 31(6):2313-2320.[56] Sandra D Mulder, Robert Veerhuis, Marinus A Blankenstein, et al. The effect of amyloid associated proteins on the expression of genes involved in amyloid-beta clearance by adult human astrocytes [J]. Exp Neurol, 2012, 233(1):373-379.[57] Eric Karran, John Hardy. Antiamyloid therapy for Alzheimer’s disease — are we on the right road? [J]. N Engl J Med, 2014, 370(4):377-378. |