神经药理学报 ›› 2017, Vol. 7 ›› Issue (3): 33-42.DOI: 10.3969/j.issn.2095-1396.2017.03.005
张丽娜,张欣,薛娟,张丹参
出版日期:
2017-06-26
发布日期:
2017-12-01
通讯作者:
张丹参,女,博士生导师;研究方向:神经药理学;E-mail:zhangds2011@163.com
作者简介:
张丽娜,女,博士研究生;研究方向:神经药理学;E-mail:270997934@163.com
ZHANG Li-na1,2,ZHANG Xin2,XUE Juan2,ZHANG Dan-shen1
Online:
2017-06-26
Published:
2017-12-01
Contact:
张丹参,女,博士生导师;研究方向:神经药理学;E-mail:zhangds2011@163.com
About author:
张丽娜,女,博士研究生;研究方向:神经药理学;E-mail:270997934@163.com
摘要: 随着对中药防治中枢神经系统衰老相关疾病发病机制的深入探讨,发现中药通过信号分子Wnt、β-catenin、TCF/ LEF、磷脂酰肌醇3 激酶( phosphatidylinositol-3 kinase,PI3K)、蛋白激酶B( protein kinase B,AKT)、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、核因子-κB(nuclear factor kappa B,NF-κB),细胞色素C(cytochrome,Cyt-C)、B 淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)家族蛋白、Caspases 酶等,调节Wnt/β-catenin、PI3K/Akt、线粒体凋亡信号通路,发挥对阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)、脑缺血等衰老相关中枢神经系统疾病的防治作用。该文着重从以上三条信号通路,对中药在中枢神经系统退行性疾病的防治现状做一阐述。
中图分类号:
张丽娜,张欣,薛娟,张丹参. 中药对中枢神经退行性疾病信号通路影响的研究进展[J]. 神经药理学报, 2017, 7(3): 33-42.
ZHANG Li-na,ZHANG Xin,XUE Juan,ZHANG Dan-shen. Advances Achievements of Traditional Chinese Medicine on the Signaling Pathways in Central Nervous Degenerative Diseases[J]. Acta Neuropharmacologica, 2017, 7(3): 33-42.
1. Hanife Guler Tanir, Sayeste Demirezen, Mehmet Sinan Beksaç. Relation of the Wnt/β-catenin signaling pathway with gynecological cancers[J].J Turkish Biology, 2010, 34(3): 227-234.2. Katharina Seitz, Verena Dürsch, Jakub Harnoš, et al. β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca2+pathway in xenopus gastrulation[J]. Plos One, 2014, 9(1):1-11.3. Hans A Kestler, Michael Kühl. From individual Wnt pathways towards a Wnt signalling network[J]. Philosophical Transactions of the Royal Society of London, 2008, 363(1495):1333-1347.4. Andrey Voronkov, Stefan Krauss. Wnt/beta-catenin signaling and small molecule inhibitors[J]. Current Pharmaceutical Design, 2013, 19(4):634-664.5. Lu Tao, Liviu Aron, Joseph Zullo, et al. REST and stress resistance in ageing and Alzheimer's disease[J]. Nature, 2014, 507(7493): 448-454.6. Jayhong A Chong, Jose Tapia-Ramirez, Sandra Kim, et al. REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons[J]. Cell, 1995, 80(6):949-957.7. Christopher J Schoenherr, David J Anderson. The neuron-restrictive silencer factor (nrsf): a coordinate repressor of multiple neuron-specific genes[J]. Science, 1995, 267(5202):1360-1363.8. Hu Yuan-yuan, Sun Qian-wen, Zhang Chen, et al. RE1 silencing transcription factor (REST) negatively regulates ALL1-fused from chromosome 1q (AF1q) gene transcription[J]. BMC Molecular Biology, 2015, 16(1):1-8.9. Jin Nana, Yin Xiao-min, Yu Dian, et al. Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease[J]. Sci Rep, 2015, 5(1): 1-1310. Darocha-Souto B, Coma M, Pérez-Nievas B G, et al. Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer's disease [J]. Neurobiology of Disease, 2012, 45(1):425-437.11. Masashi Kitazawa, David Cheng, Michelle R Tsukamoto, et al. Blocking interleukin-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer's disease model[J]. J Immunology, 2011, 187(12):6539-6549.12. Dunning Christopher, Mcgauran Gavin, Willén Katarina, et al. Direct high affinity interaction between Aβ42 and GSK3α stimulates hyperphosphorylation of tau. A new molecular link in Alzheimer's disease?[J]. Acs Chemical Neuroscience, 2016, 7(2):161-170.13. Zhang Ying-hua, Sun Yan, Wang Fei, et al. Downregulating the canonical wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress[J]. Neurochemical Research, 2012, 37(7):1409-1419.14. Kyung-Min Noh, Jee-Yeon Hwang, Antonia Follenzi, et al. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):E962- E972.15. Wang Wen-ya, Yang Yi, Ying Chun-yi, et al. Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity[J]. Neuropharmacology, 2007, 52(8):1678-1684.16. F L'Episcopo, C Tirolo, N Testa, et al. Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease[J]. Neurobiology of Disease, 2011, 41(2):508-527.17. Tang Mian-zhi, J Carlos Villaescusa, Sarah X Luo, et al. Interactions of wnt/β-catenin signaling and sonic hedgehog regulate the neurogenesis of ventral midbrain dopamine neurons[J]. J Neuroscience the Official Journal of the Society for Neuroscience, 2010, 30(27):9280-9291.18. Juliette D Godin, Ghislaine Poizat, Mirian A Hickey, et al. Mutant huntingtin-impaired degradation of β-catenin causes neurotoxicity in Huntington's disease[J]. Embo J, 2010, 29(14):2433-2445.19. Pascale Dupont, Marie-Therese Besson, Jerome Devaux, et al. Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila[J]. Neurobiology of Disease, 2015, 47(2):237-247.20. Francesca L'Episcopo, Janelle Drouin-Ouellet, Cataldo Tirolo, et al. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions [J]. Cell Death & Disease, 2016, 7(4):1-14.21. Hans Clevers, Roel Nusse. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6):1192-1205.22. Brian H Anderton, Rejith Dayanandan, Richard Killick, et al. Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer's disease?[J]. Molecular Medicine Today, 2000, 6(2):54-59.23. Ernest Arenas. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease[J]. J Molecular Cell Biology, 2014, 6(1):42-53.24. Dai Ting-li, Zhang Chan, Peng Fang, et al. Depletion of canonical Wnt signaling components has a neuroprotective effect on midbrain dopaminergic neurons in an MPTP-induced mouse model of Parkinson’s disease[J]. Experimental & Therapeutic Medicine, 2014, 8(2):384-390.25. Wang Chun-yan, Zheng Wei, Wang Tao, et al. Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model[J]. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 2011, 36(5):1073-1089.26. Zhang Xiong, Yin Wen-ke, Shi Xiao-dong, et al. Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells[J]. European J Pharmaceutical Sciences Official J European Federation for Pharmaceutical Sciences, 2011, 42(5):540-546.27. Tiwari S K, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer’s disease model via canonical wnt/β-catenin pathway[j]. Acs nano, 2014, 8(1):76-103.28. Anshuman Sinha, Riyaj S Tamboli, Brashket Seth B, et al. Neuroprotective role of novel triazine derivatives by activating wnt/β catenin signaling pathway in rodent models of Alzheimer’s disease[J]. Molecular Neurobiology, 2015, 52(1):638-652.29. Yao Ying-jia, Gao Zhong, Liang Wen-bo, et al. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model[J]. Toxicology & Applied Pharmacology, 2015, 289(3):474-481.30. Yao Ying, Chen Xian-chun, Bao Yu-ting, et al. Puerarin inhibits β-amyloid peptide 1-42-induced tau hyperphosphorylation via the Wnt/β-catenin signaling pathway[J].Molecular Medicine Reports, 2017,16(6):9081-9085.31. Giuseppe Esposito, Daniele De Filippis, Rosa Carnuccio, et al. The marijuana component cannabidiol inhibits β-amyloid-induced tau protein hyperphosphorylation through Wnt/β-catenin pathway rescue in PC12 cells[J]. J Molecular Medicine, 2006, 84(3):253-258.32. Zeng K, Wang X, Hong F U, et al. Inhibition of β-Amyloid Protein (Aβ)-Induced Neurotoxicity by Icariin via Wnt/β-Catenin Signaling Pathway[J]. Chinese Pharmaceutical J, 2011, 59(6):542-550.33. Yang Sha-sha, Wei Qin, Chen Shi-ya, et al. Effects of cistanche deserticola on behavior and expression of gsk-3β in hippocampus of rat model of Parkinson's disease[J]. Rehabilitation Medicine, 2016, 26(6):24-27.34. Sun Fang-ling, Wang Wen, Zuo Wei, et al. Promoting neurogenesis via Wnt/β-catenin signaling pathway accounts for the neurorestorative effects of morroniside against cerebral ischemia injury[J]. European J Pharmacology, 2014, 738:214-221.35. 邓勇, 王键, 谭辉,等. 脑络欣通对气虚血瘀型中脑动脉阻塞再灌注大鼠海马及额顶叶皮质Wnt3a、Wnt5a和β-Catenin表达的影响[J]. 安徽中医药大学学报, 2017, 36(3):59-63.36. Wen Jing, Wang Jian, Luo Shi-lan, et al. Advances in studies on regulating effects of Wnt/β-catenin signaling pathway on neurovascular unit after cerebral Ischemia and related medicine[J].Chinese Pharmacological Bulletin, 2016,31(9):1713-1724.37. Park J W, Cheng S Y. Activation of PI3K by thyroid hormone nuclear receptors[M]// S H Domains. Springer International Publishing, 2015: 91-110.38. Wang Long, Cheng Shan-shan, Yin Zhen-yu, et al. Conditional inactivation of Akt three isoforms causes tau hyperphosphorylation in the brain[J]. Molecular Neurodegeneration, 2015, 10(1):1-7.39. Robert Eves, Robyn Oldham, Jia Lilly , et al. The roles of akt isoforms in the regulation of podosome formation in fibroblasts and extracellular matrix invasion[J]. Cancers, 2015, 7(1):96-111.40. Michael D Kaytor, Harry T Orr. The GSK3 beta signaling cascade and neurodegenerative disease[J]. Current Opinion in Neurobiology, 2002, 12(3):275-278.41. Li Yu-juan, Zeng Min-ting, Chen Wei-qiang, et al. Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats[J]. Plos One, 2014, 9(4):1-11.42. Wang Wei-ping, Shi Zhi-qin, Yu Jiang-hua, et al. Effect of recombinant human erythropoietin on hippocampal p-Akt and caspase-9 expressions in rats with status epilepticus and the mechanism[J]. J Southern Medical University, 2010, 30(1):64-69.43. Irena Dimov, Desanka Tasi, Ivan Stefanovi, et al. New insights into molecular basis of glioblastoma multiforme and associated immunosuppression[J]. Acta Facultatis Medicae Naissensis, 2013, 30(4):165-184.44. Hsu Ya-yun, Chen Cheng-sheng, Wu Sheng-nan, et al. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells[J]. European J Pharmaceutical Sciences Official J European Federation for Pharmaceutical Sciences, 2012, 46(5):415-425.45. Fan C L, Jiang J, Liu H C, et al. Forkhead box protein M1 predicts outcome in human osteosarcoma[J]. International J Clinical & Experimental Medicine, 2015, 8(9):15563-15568.46. Masayuki Fukui, Hye Joung Choi, Bao Ting-zhu. Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death[J]. Free Radical Biology & Medicine, 2010, 49(5):800-813.47. Suzanne Timmons, Meghan Coakley McCarthy, Aileen M Moloney, et al. Akt signal transduction dysfunction in Parkinson's disease[J]. Neuroscience Letters, 2009, 467(1):30-35.48. Cristina Malagelada, Jin Zong-hao, Lloyd A Greene. RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation[J]. J Neuroscience the Official J Society for Neuroscience, 2008, 28(53):14363-14371.49. Tanjala T Gipson, Michael Van Doren Johnston. Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-related neurogenetic disorders[J]. Neural Plasticity, 2012, 2012(1):486402-486412.50. Qi Hong-yi, Han Yi-fan, Rong Jian-hui. Potential roles of PI3K/Akt and Nrf2–Keap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation[J]. Neuropharmacology, 2012, 62(4):1659-1670.51. Yin Xiao-min, Chen Chen, Xu Ting, et al. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice [J]. Biochem Biophys Res Commun, 2017:1-7.52. Zhang Ling-ling, Huang Lin-hong, Chen Liang-wei, et al. Neuroprotection by tetrahydroxystilbene glucoside in the MPTP mouse model of Parkinson's disease[J]. Toxicology Letters, 2013, 222(2):155-163.53. Qin Rong, Li Xiao-bing, Li Gang, et al. Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation[J]. Toxicology Letters, 2011, 202(1):1-7.54. Chen Wen-fang, Wu Li, Du Zhong-rui, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways[J]. Phytomedicine, 2016, 25(1):93-99.55. Zhang Dong, Wang Zhe, Sheng Chen-xia, et al. Icariin prevents amyloid beta-induced apoptosis via the pi3k/akt pathway in pc-12 cells[J]. Evidence-based complementary and alternative medicine : eCAM, 2015, 2015:235265-235274.56. Dong Hui-min, Mao Shan-ping, Mao Shan-pin, et al. Tanshinone IIA protects PC12 cells from β-amyloid(25-35)-induced apoptosis via PI3K/Akt signaling pathway[J]. Molecular Biology Reports, 2012, 39(6):6495-6503.57. Lu Y, Jin Y, Sui H J, et al. Sarsasapogenin inhibits amyloid beta-protein induced decrease of synaptophysin in hippocampal neurons of neonatal rats via up-regulating PI3K/Akt/GSK3 pathway[J]. Chinese J Pharmacology & Toxicology, 2013, 27(4):635-640.58. Teng Le-sheng, Meng Qing-fan, Lu Jia-hui, et al. Liquiritin modulates ERK- and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells[J]. Molecular Medicine Reports, 2014, 10(2):818-824.59. Stephanie Bleicken, Gunnar Jeschke, Carolin Stegmueller, et al. Structural model of active Bax at the membrane[J]. Molecular Cell, 2014, 56(4):496-505.60. Jisen Huai, Lars Jöckel, Karen Schrader, et al. Role of caspases and non-caspase proteases in cell death[J]. F1000 Biology Reports, 2010, 2(1):48-53.61. 安涛. Caspase在细胞凋亡过程中切割ARF-BP1蛋白的研究[D]. 厦门:厦门大学, 2014. 62. Bao Juan, Yang Qi-dong, Zhou Lin, et al. Study of neuronal apoptosis and changes in expression of the proteins related to the mitochondrial pathway after aβ1–42 injection in the rat hippocampus[J]. Neuroembryology & Aging, 2009, 5(4):156-160.63. Fatemeh Shaerzadeh, Fereshteh Motamedi, Dariush Minai-Tehrani, et al. Monitoring of neuronal loss in the hippocampus of aβ-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis[J]. Neuromolecular Medicine, 2014, 16(1):175-190.64. Fredrik H Sterky, Alexander F Hoffman, Dusanka Milenkovic, et al. Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons[J]. Human Molecular Genetics, 2012, 21(5):1078-1089.65. Masakatsu Kanazawa, Hiroyuki Ohba, Shingo Nishiyama, et al. Effects of MPTP on serotonergic neuronal systems and mitochondrial complex i activity in the living brain: a pet study on conscious rhesus monkeys[J]. Journal of Nuclear Medicine, 2017, 58(7):1111-1116.66. Chen Su-juan, Qian Ren, Zhang Jin-fei, et al. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain[J]. Neuropathology & Applied Neurobiology, 2015, 40(6):759-777.67. 袁燕. 镉对大鼠大脑皮质神经细胞毒性损伤的机制[D]. 扬州:扬州大学, 2012. 68. Jiang Chen-yang, Yuan Yan, Hu Fei-fei, et al. Cadmium induces pc12 cells apoptosis via an extracellular signal-regulated kinase and c-jun n-terminal kinase-mediated mitochondrial apoptotic pathway[J]. Biological Trace Element Research, 2014, 158(2):249-258.69. Yang Xiao-ping, Liu Tao-yan, Qin Xiao-yan, et al. Potential protection of 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside against staurosporine-induced toxicity on cultured rat hippocampus neurons[J]. Neuroscience Letters, 2014, 576(1):79-83.70. Zhang Ru-yi, Sun Fang-ling, Zhang Lan, et al. Tetrahydroxystilbene glucoside inhibits α-synuclein aggregation and apoptosis in A53T α-synuclein-transfected cells exposed to MPP+[J]. Canadian J Physiologys Pharmacology, 2017, 95(6) :750-758.71. Sun Fang-ling, Zhang Lan, Zhang Ru-yi, et al. Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity[J]. European J Pharmacology, 2011, 660(2-3):283-290.72. He Hong, Wang Song-hai, Tian Ji-yu, et al. Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside in the MPTP-induced mouse model of Parkinson's disease: Involvement of reactive oxygen species-mediated JNK, P38 and mitochondrial pathways[J]. European J Pharmacology, 2015, 767(2):175-182.73. Zhao Q, Yang X, Cai D, et al. Echinacoside protects against MPP+-induced neuronal apoptosis via ros/atf3/chop pathway regulation[J]. Neurosci Bull, 2016, 32(4):349-362.74. Zhu M, Lu C, Li W. Transient exposure to echinacoside is sufficient to activate Trk signaling and protect neuronal cells from rotenone[J]. J Neurochemistry, 2013, 124(4):571-580.75. Geng Xing-chao, Tian Xue-fei, Tu Peng-fei, et al. Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease[J]. European Journal of Pharmacology, 2007, 564(3):66-74.76. Wang Hong-quan, Xu Yu-xia, Yan Jie, et al. Acteoside protects human neuroblastoma SH-SY5Y cells against beta-amyloid-induced cell injury[J]. Brain Research, 2009, 1283:139-147.77. Peng X M, Gao L, Huo S X, et al. The mechanism of memory enhancement of acteoside (verbascoside) in the senescent mouse model induced by a combination of d-gal and alcl3[J]. Phytotherapy Research, 2015, 29(8):1137-1144. 78. Liu Bao-jun, Zhang Hong-ying, Xu Chang-qing, et al. Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons[J]. Brain Research, 2011, 1375(4):59-67. 79. Xu Ai-li, Jiang Ming-chun, Chen Xiao-han, et al. Icariin protects against MPP+-induced neurotoxicity in MES23.5 cells[J]. Sheng LI Xue Bao, 2016, 68(5):585-591.80. Hu Sheng-quan, Han Ren-wen, Mak Shing-hung, et al. Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells[J]. Journal of Ethnopharmacology, 2011, 135(1):34-42.81. Wang Ting, Gu Jun, Wu Peng-fei, et al. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-κB pathways and inhibition of intracellular ROS/RNS generation[J]. Free Radical Biology & Medicine, 2009, 47(3):229-240. |
[1] | 杨琳,艾静. 脑源雌激素在阿尔茨海默病中的作用研究进展[J]. 神经药理学报, 2019, 9(5): 50-64. |
[2] | 张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(6): 9-20. |
[3] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[4] | 黄蕊,杨翠翠,张兰. 二苯乙烯苷对APP/PS1 双转基因小鼠学习记忆及突触可塑性的影响[J]. 神经药理学报, 2018, 8(2): 31-31. |
[5] | 禹文峰,李成朋,韩飞,官志忠. 硫辛酸抑制AIF 介导的非Caspase 凋亡通路对多巴胺能神经元的保护机制[J]. 神经药理学报, 2018, 8(2): 40-40. |
[6] | 雷曦,王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 基于快速老化模型小鼠SAMP8 的CA-30 抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(2): 50-50. |
[7] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[8] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[9] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[10] | 郭鹏,张巍. 阿尔茨海默病患者睡眠障碍及其与认知障碍关系的研究[J]. 神经药理学报, 2018, 8(2): 61-61. |
[11] | 连腾宏,李少武,余秋瑾,等. 阿尔茨海默病伴发嗅觉障碍的临床特点及静息态功能核磁共振成像的研究[J]. 神经药理学报, 2018, 8(2): 62-62. |
[12] | 金朝,郭鹏,左丽君,等. 阿尔茨海默病患者视网膜纤维层厚度与临床症状关系[J]. 神经药理学报, 2018, 8(2): 69-69. |
[13] | 常福厚,白图雅,吕晓丽,胡玉霞,李君,林楠,周树宏. 中蒙药对老年性痴呆治疗的研究进展[J]. 神经药理学报, 2018, 8(2): 73-73. |
[14] | 王同兴,韩 露,程肖蕊,周文霞,张永祥. 基于神经内分泌免疫调节分子网络的防治阿尔茨海默病药物新靶点的探索性研究[J]. 神经药理学报, 2018, 8(2): 76-76. |
[15] | 林志彬. 灵芝的抗衰老与抗阿尔茨海默病的药理研究进展[J]. 神经药理学报, 2018, 8(1): 9-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||