神经药理学报 ›› 2011, Vol. 1 ›› Issue (5): 40-48.
楚世峰, 陈乃宏
出版日期:
2011-10-26
发布日期:
2013-03-24
通讯作者:
陈乃宏,男,教授,博士生导师;研究方向:神经药理及神经分子生物学;Tel:+86-010-63165177, Fax:+86-010-63165211,E-mail: chennh@imm.ac.cn
作者简介:
楚世峰,男,博士研究生; 研究方向:神经药理及神经分子生物学;E-mail: chushifeng@imm.ac.cn
基金资助:
国家自然科学基金(No.30801527、30973887、U832008、90713045、81072541),科技部项目 (No.2010DFB32900),创新药物重大专项(No.2012ZX09301002-004)
CHU Shi-feng, CHEN Nai-hong
Online:
2011-10-26
Published:
2013-03-24
Contact:
陈乃宏,男,教授,博士生导师;研究方向:神经药理及神经分子生物学;Tel:+86-010-63165177, Fax:+86-010-63165211,E-mail: chennh@imm.ac.cn
About author:
楚世峰,男,博士研究生; 研究方向:神经药理及神经分子生物学;E-mail: chushifeng@imm.ac.cn
Supported by:
国家自然科学基金(No.30801527、30973887、U832008、90713045、81072541),科技部项目 (No.2010DFB32900),创新药物重大专项(No.2012ZX09301002-004)
摘要: N-甲基-D-天冬氨酸受体(N-Methyl-D-Aspartate receptor,NMDA受体)历来被认为是一把双刃剑。一方面,它可介导钙离子内流,增强突触可塑性,提高神经元兴奋性;另一方面,它的过度开放导致钙离子过量内流,形成钙超载,引起细胞功能紊乱,诱发凋亡,或启动细胞死亡信号转导途径。然而,最近的研究表明NMDA受体的生物学效应并不完全取决于其开放程度,不同部位的NMDA受体可激活不同的信号转导通路,产生相反的生物学效应。其中突触上的NMDA受体活化可通过作用于细胞核内的钙离子信号转导通路,发挥保护神经细胞的作用;而突触外的NMDA受体则可诱发细胞的凋亡甚至死亡途径。两者之间的失衡是神经系统疾病发病的主要机制之一,例如在老年痴呆以及亨廷顿氏病中,均发现有NMDA受体分布的异常。因此,调控NMDA受体的分布为神经退行性疾病的治疗提供一个新的方向。
中图分类号:
楚世峰,陈乃宏. 突触内外NMDA受体的分布调控及其生物学功能[J]. 神经药理学报, 2011, 1(5): 40-48.
CHU Shi-feng, CHEN Nai-hong. Distinct Roles and Modulations of Synaptic and Extrasynaptic NMDA Receptors[J]. Acta Neuropharmacologica, 2011, 1(5): 40-48.
1 A. Abbott. NMDA receptor subunit cloned [J]. Trends Pharmacol Sci 1991, 12(9):334.2 Shirley W.Y. Tsang, Harry V. Vinters, Jeffrey L. Cummings, et al. Alterations in NMDA receptor subunit densities and ligand binding to glycine recognition sites are associated with chronic anxiety in Alzheimer's disease [J]. Neurobiol Aging, 2008, 29(10):1524-1532.3 Kaori. Akashi, Toshikazu. Kakizaki, Haruyuki. Kamiya, et al. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses [J]. J Neurosci, 2009, 29(35):10869-10882.4 Liza. Barki-Harrington, Alina. Elkobi, Tali. Tzabary, et al. Tyrosine phosphorylation of the 2B subunit of the NMDA receptor is necessary for taste memory formation [J]. J Neurosci, 2009, 29(29):9219-9226.5 Marios. Giannakopoulos, Elias. D. Kouvelas, Ada. Mitsacos. Experience-dependent regulation of NMDA receptor subunit composition and phosphorylation in the retina and visual cortex [J]. Invest Ophthalmol Vis Sci, 2010, 51(4):1817-22.6 Steven M. Rothman, John W. Olney. Excitotoxicity and the NMDA receptor--still lethal after eight years [J]. Trends Neurosci, 1995, 18(2):57-58.7 Gregory. J. Zipfel, Jin-Moo. Lee, Dennis. W. Choi. Reducing calcium overload in the ischemic brain [J]. N Engl J Med, 1999, 341(20):1543-1544.8 Henry G. S. Martin, Wang Yu-tian. Blocking the deadly effects of the NMDA receptor in stroke[J]. Cell, 2010, 140(2):174-176.9 Yusuke. Suzuki, Yoshihiko. Yamazaki, Yasukazu. Hozumi, et al. NMDA receptor-mediated Ca(2+) influx triggers nucleocytoplasmic translocation of diacylglycerol kinase zeta under oxygen-glucose deprivation conditions, an in vitro model of ischemia, in rat hippocampal slices [J]. Histochem Cell Biol, 2012, 137(4):499-511.10 Neal. Innocent, Sarah. L. Cousins, F. Anne. Stephenson. NMDA receptor/amyloid precursor protein interactions: a comparison between wild-type and amyloid precursor protein mutations associated with familial Alzheimer's disease [J]. Neurosci Lett, 2012, 515(2):131-136.11 Herman B. Fernandes, Lynn A. Raymond. NMDA receptors and huntington's disease [M]// Van Dongen AM .Biology of the NMDA Receptor: CRC Press, 2009.12 Maria. Hernandez, Inmaculada. Guerrikagoitia, Luis. Martinez-Millan, et al. NMDA-receptor blockade enhances cell apoptosis in the developing retina of the postnatal rat [J]. Int J Dev Biol, 2007, 51(2):117-22.13 Henrik H. Hansen, Tim Briem, Mark Dzietko, et al. Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain [J]. Neurobiol Dis, 2004, 16(2):440-453.14 M Vural, A Arslantas, N Yazihan, et al. NMDA receptor blockage with 2-amino-5-phosphonovaleric acid improves oxidative stress after spinal cord trauma in rats [J]. Spinal Cord, 2010, 48(4):285-289.15 Brian H. Harvey, Tanya Bothma, Ane Nel, et al. Involvement of the NMDA receptor, NO-cyclic GMP and nuclear factor K-beta in an animal model of repeated trauma [J]. Hum Psychopharmacol, 2005, 20(5):367-373.16 Masuo Ohno, Ayako Yoshimatsu, Masako Kobayashi, et al. Beta-adrenergic dysfunction exacerbates impairment of working memory induced by hippocampal NMDA receptor blockade in rats [J]. Eur J Pharmacol, 1996, 307(1):21-26.17 Giles E. Hardingham, Hilmar. Bading. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders [J]. Nat Rev Neurosci, 2010, 11(10):682-696.18 A. Sanz-Clemente, R. A. Nicoll, K. W. Roche. Diversity in NMDA receptor composition: many regulators, many consequences [J]. Neuroscientist, 2012, doi:10.1177/1073858411435129.19 Ronald S. Petralia, Rana A. Al-Hallaq, Robert J. Wenthold. Trafficking and Targeting of NMDA Receptors [M]// Van Dongen AM. Biology of the NMDA Receptor:CRC Press, 2009.20 Alexandra M. Kaufman, Austen J. Milnerwood, Milnerwood D. Sepers, et al. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons [J]. J Neurosci, 2012, 32(12):3992-4003.21 E. Gouix, F. Leveille, O. Nicole, et al. Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation [J]. Mol Cell Neurosci, 2009, 40(4):463-473.22 Christopher G. Thomas, Ashleigh J. Miller, Gary L. Westbrook. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons [J]. J Neurophysiol, 2006, 95(3):1727-1734.23 Li Jin-hong., Wang Yue-hua., Barry B. Wolfe, et al. Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons [J]. Eur J Neurosci, 1998, 10(5):1704-1715.24 Kevin Erreger, Shashank M. Dravid, Tue G. Banke, et al. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles [J]. J Physiol, 2005, 563(2):345-358.25 Tobias Muller, Doris Albrecht, Christine Gebhardt. Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice [J]. Learn Mem, 2009, 16(6):395-405.26 Jakob. von Engelhardt, Irinel. Coserea, Verena. Pawlak, et al. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors [J]. Neuropharmacology, 2007, 53(1):10-17.27 Li Sheng-tian, Ju Jue-gang. Functional roles of synaptic and extrasynaptic NMDA receptors in physiological and pathological neuronal activities [J]. Curr Drug Targets, 2012, 13(2):207-221.28 Ruslan I. Stanika, Christine A. Winters, Natalia B. Pivovarova, et al. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons [J]. Neurobiol Dis, 2010, 37(2):403-411.29 Karl Heinz Smalla, Jale Sahin, Jorg Putzke, et al. Altered postsynaptic-density-levels of caldendrin in the para-chloroamphetamine-induced serotonin syndrome but not in the rat ketamine model of psychosis [J]. Neurochem Res, 2009, 34(8):1405-1409.30 C. M. Gladding, M. D. Sepers, J. Xu, et al. Calpain and STriatal-Enriched protein tyrosine Phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model [J]. Hum Mol Genet, 2012, 21(17):3739-3752.31 Xu Jian, Pradeep Kurup, Zhang Yongfang, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP [J].J Neurosci, 2009, 29(29):9330-9343.32 Robert J. Wenthold, Kate Prybylowski, Steve Standley, et al. Trafficking of NMDA receptors [J]. Annu Rev Pharmacol Toxicol, 2003, 43:335-358.33 Palmi T. Atlason, Molly L. Garside, Elisabeth Meddows, et al. N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor [J]. J Biol Chem, 2007, 282(35):25299-25307.34 Martin. Horak, Kai. Chang, Robert J. Wenthold. Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor [J]. J Neurosci, 2008, 28(13):3500-3509.35 Masahiro Fukaya, Akira Kato, Chanel Lovett, et al. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice [J]. Proc Natl Acad Sci USA, 2003, 100(8):4855-4860.36 Bo-Shiun Chen, Eleanor V. Thomas, Antonio Sanz-Clemente, et al. NMDA receptor-dependent regulation of dendritic spine morphology by SAP102 splice variants [J]. J Neurosci, 2011, 31(1):89-96.37 G. M. Elias, L. A. Elias, P. F. Apostolides, et al. Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development [J]. Proc Natl Acad Sci USA, 2008, 105(52):20953-20958.38 Yoko Shiraishi, Akihiro Mizutani, Katsuhiko Mikoshiba, et al. Coincidence in dendritic clustering and synaptic targeting of homer proteins and NMDA receptor complex proteins NR2B and PSD95 during development of cultured hippocampal neurons [J]. Mol Cell Neurosci, 2003, 22(2):188-201.39 Hou Xiao-yu, Zhang Guang-yi, Yan Jing-zhi, et al. Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia [J]. Brain Res, 2002, 955(1-2):123-132.40 Darrick T. Balu, Joseph T. Coyle. Glutamate receptor composition of the post-synaptic density is altered in genetic mouse models of NMDA receptor hypo- and hyperfunction [J]. Brain Res, 2011, 1392:1-7.41 Martin Horak, Robert J. Wenthold. Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface [J]. J Biol Chem, 2009, 284(15):9683-9691.42 Li Yan-chun, Liu Gang., Hu Jian-li, et al. Dopamine D(1) receptor-mediated enhancement of NMDA receptor trafficking requires rapid PKC-dependent synaptic insertion in the prefrontal neurons [J]. J Neurochem, 2010, 114(1):62-73.43 Lucie Bard, Laurent Groc. Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor [J]. Mol Cell Neurosci, 2011, 48(4):298-307.44 Hu Jian-li, Liu Gang, Li Yan-chun, et al. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons [J]. Mol Brain, 2010, 3:20.45 Chen Bo-shiun, Katherine W. Roche. Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C [J]. Neuron, 2009, 62(4):471-478.46 Z. Gu, W. Liu, J. Wei, et al. Regulation of N-methyl-D-aspartic acid (NMDA) receptors by metabotropic glutamate receptor 7 [J]. J Biol Chem, 2012, 287(13):10265-10275.47 Gabriela. Lavezzari, Jennifer. McCallum, Colleen. M. Dewey, et al. Subunit-specific regulation of NMDA receptor endocytosis [J]. J Neurosci, 2004, 24(28):6383-6391.48 Zhang Shou, Edelmann Lambert, Liu June, et al. Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors [J]. J Neurosci, 2008, 28(2):415-424.49 Kate Prybylowski, Chang Kai, Sans Nathalies, et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2 [J]. Neuron, 2005, 47(6):845-857.50 Katherine W. Roche, Steve Standley, Jennifer McCallum, et al. Molecular determinants of NMDA receptor internalization [J]. Nat Neurosci, 2001, 4(8):794-802.51 Matthew Townsend, Liu Yu-dong, Martha Constantine-Paton. Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses [J]. J Neurosci, 2004, 24(49):11098-11107.52 Yi Nong, Huang Yue-qiao, Ju William, et al. Glycine binding primes NMDA receptor internalization [J]. Nature, 2003, 422(6929):302-307.53 Yang Jian, Sophie E. Chamberlain, Gavin L. Woodhall, et al. Mobility of NMDA autoreceptors but not postsynaptic receptors at glutamate synapses in the rat entorhinal cortex [J]. J Physiol, 2008, 586(Pt 20):4905-4924.54 Kenneth R. Tovar, Gary L. Westbrook. Mobile NMDA receptors at hippocampal synapses [J]. Neuron, 2002, 34(2):255-264.55 Ding Mei, Shen Kang. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases [J]. Bioessays, 2008, 30(11-12):1075-1083.56 Jason J. Yi, Michael D. Ehlers. Ubiquitin and protein turnover in synapse function [J] . Neuron, 2005, 47(5):629-632.57 Anna Karpova, Marina Mikhaylova, Ulrich Thomas, et al. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses [J]. J Neurosci, 2006, 26(18):4949-4955.58 Baris Bingol, Wang Chi-fong, David Arnott, et al. Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines [J]. Cell, 2010, 140(4):567-578.59 Sarah L. Cousins, Michalis Papadakis, A Richard Rutter, et al. Differential interaction of NMDA receptor subtypes with the post-synaptic density-95 family of membrane associated guanylate kinase proteins [J]. J Neurochem, 2008, 104(4):903-913.60 Michael J. Menconi, Wei Wei, Yang Hong-mei, et al. Treatment of cultured myotubes with the calcium ionophore A23187 increases proteasome activity via a CaMK II-caspase-calpain-dependent mechanism [J]. Surgery, 2004, 136(2):135-142.61 Shen Hao-wei, Laxminarayana Korutla, Nicholas Champtiaux, et al. NAC1 regulates the recruitment of the proteasome complex into dendritic spines [J]. J Neurosci, 2007, 27(33):8903-8913.62 Liu Junjun, James L. Maller. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor [J]. Curr Biol, 2005, 15(16):1458-1468.63 Munjin Kwon, Jose R. Fernandez, Gregory F. Zegarek, et al. BDNF-promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin [J]. J Neurosci, 2011, 31(26):9735-9745.64 In Koo Hwang, Ki-Yeon Yoo, Dae Young Yoo, et al. Time-course of changes in phosphorylated CREB in neuroblasts and BDNF in the mouse dentate gyrus at early postnatal stages [J].Cell Mol Neurobiol, 2011, 31(5):669-674.65 Li Mei, Zhang Dong-qing, Wang Xiang-zhen, et al. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway [J]. Biochem Biophys Res Commun, 2011, 411(4):667-672.66 Tian Xuejun, Gotoh Takaya, Tsuji Kiyoshi, et al. Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB [J]. EMBO J, 2004, 23(7):1567-1575.67 Do Thanh Phu, Manuel Wallbach, Chantal Depatie, et al. Regulation of the CREB coactivator TORC by the dual leucine zipper kinase at different levels [J]. Cell Signal, 2011, 23(2):344-353.68 Annette Heinrich, Ulrike Boer, Mladen Tzvetkov, et al. Stimulation by lithium of the interaction between the transcription factor CREB and its co-activator TORC [J]. Biosci Rep, 2009, 29(2):77-87.69 Sarmila Majumder, Saradhadevi Varadharaj, Kalpana Ghoshal, et al. Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene [J]. J Biol Chem, 2004, 279(15):14803-14811.70 Daniela C. Dieterich, Anna Karpova, Marina Mikhaylova, et al. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus [J]. PLoS Biol, 2008, 6(2):e34.71 Tomohiro Nakamura, Stuart A. Lipton. Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies [J]. Cell Calcium, 2010, 47(2):190-197.72 Aruna Vashishta, Agata Habas, Priit Pruunsild, et al. Nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) as a mediator of antiapoptotic transcription in NMDA receptor-stimulated cortical neurons [J]. J Neurosci, 2009, 29(48):15331-15340.73 Abbas Hadji, Cyril Clybouw, Marie-Therese Auffredou, et al. Caspase-3 triggers a TPCK-sensitive protease pathway leading to degradation of the BH3-only protein puma [J]. Apoptosis,2010, 15(12):1529-1539.74 M. P. Kashyap, A. K. Singh, M. A. Siddiqui, et al. Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells [J]. Chem Res Toxicol, 2010, 23(11):1663-1672.75 Marc-Andre Martel, Frances X. Soriano, Paul Baxter, et al. Inhibiting pro-death NMDA receptor signaling dependent on the NR2 PDZ ligand may not affect synaptic function or synaptic NMDA receptor signaling to gene expression [J]. Channels (Austin), 2009, 3(1):12-15.76 Bashayer Al-Mubarak, Francesc X. Soriano, Giles E. Hardingham. Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene [J]. Channels (Austin), 2009, 3(4):233-238.77 Kei Hori, Hiroki Yasuda, Daijiro Konno, et al. NMDA receptor-dependent synaptic translocation of insulin receptor substrate p53 via protein kinase C signaling [J]. J Neurosci, 2005, 25(10):2670-2681.78 Coline Haxaire, Fabrice R. Turpin, Brigitte Potier, et al. Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation [J]. Aging Cell, 2012, 11(2):336-344. |
[1] | 孙毅,谭博,苏瑞斌. 偏向性配体——阿片类镇痛药设计新思路[J]. 神经药理学报, 2018, 8(2): 1-7. |
[2] | 王晋辉,黄丽,陈娜. 大脑皮层GABA 能神经元缺血性损伤:易损性,机制和病理影响[J]. 神经药理学报, 2018, 8(2): 8-25. |
[3] | 朱东海,林娟,郭海彪,李楚源. 脑心清片对脂多糖诱导的BV-2 细胞的抗炎及抗凋亡作用[J]. 神经药理学报, 2018, 8(2): 37-37. |
[4] | 禹文峰,李成朋,韩飞,官志忠. 硫辛酸抑制AIF 介导的非Caspase 凋亡通路对多巴胺能神经元的保护机制[J]. 神经药理学报, 2018, 8(2): 40-40. |
[5] | 曾菊,程斌,程肖蕊,周文霞,张永祥. 基于LPS 诱导小鼠炎症模型的LW-AFC 抗炎作用研究[J]. 神经药理学报, 2018, 8(2): 49-49. |
[6] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[7] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[8] | 王保磊,王佳,郭春燕. 基于血小板途径的抗血栓机制的研究[J]. 神经药理学报, 2017, 7(5): 34-38. |
[9] | 张丽娜,张欣,薛娟,张丹参. 中药对中枢神经退行性疾病信号通路影响的研究进展[J]. 神经药理学报, 2017, 7(3): 33-42. |
[10] | 钟佳宏,汪海涛,徐江平. α - 突触核蛋白与帕金森病[J]. 神经药理学报, 2017, 7(2): 62-62. |
[11] | 陈佳佳,冯红芳,钟佳宏,邹征强,汪海涛,徐江平. PDE4抑制剂FCPR16对局灶性脑缺血再灌注损伤大鼠的保护作用[J]. 神经药理学报, 2017, 7(2): 68-68. |
[12] | 何莲子. 淫羊藿次苷Ⅱ抗鹅膏蕈氨酸诱导的大鼠学习记忆减退及机制研究[J]. 神经药理学报, 2017, 7(2): 46-46. |
[13] | 杜贯涛,张春腾,洪浩. 5- 脂氧合酶与阿尔茨海默病[J]. 神经药理学报, 2016, 6(5): 39-44. |
[14] | 刘军举,付冬君,牛进波,张旗,张雁冰. 2’- 溴-2- 羟基-4,6,4’,5’- 四甲氧基查尔酮抑制SK-N-SH 细胞增殖的作用研究[J]. 神经药理学报, 2016, 6(1): 18-24. |
[15] | 胡宝玲, 郭春燕. 芍药苷神经保护作用机制的研究进展[J]. 神经药理学报, 2015, 5(6): 51-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||