[1] Jason Huse, Eric C Holland. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma[J]. Nat Rev Cancer, 2010, 10(5): 319-331.[2] Manus J Donahue, Jaishri O Blakeley, Zhou Jin-yuan, et al. Evaluation of human brain tumor heterogeneity using multiple T1-based MRI signal weighting approaches[J]. Magn Reson Med, 2008, 59(2): 336-344.[3] Isaac Yang, Manish Aghi. New advances that enable identification of glioblastoma recurrence[J]. Nat Rev Clin Oncol, 2009, 6(11): 648-657.[4] Patrick Y Wen, Santosh Kesari. Malignant gliomas in adults[J]. N Engl J Med, 2008, 359(5): 492-507.[5] Michel Demeule, Anthony Regina, Christian Che, et al. Identification and design of peptides as a new drug delivery system for the brain[J]. J Pharmacol Exp Ther, 2008, 324(3): 1064-1072.[6] Michel Demeule, Jean-Christophe Currie, Yanick Bertrand, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2[J]. J Neurochem, 2008, 106(4): 1534-1544.[7] Xin Hong-liang, Jiang Xin-yi, Gu Ji-jin, et al. Angiopep-Conjugated poly(ethyleneglycol)-Co-poly(ε-Caprolactone) nanoparticles as dualtargeting drug delivery system for brain glioma[J]. Biomaterials, 2011, 32(18): 4293-4305.[8] Conchita Tros de Ilarduya, Sun Yan, Nejat Duzgunes. Gene delivery by lipoplexes and polyplexes[J]. Eur J Pharm Sci, 2010, 40(3): 159-170.[9] Akiko Eguchi, Bryan R Meade, Yung-Chi Chang, et al. Efficient siRNA delivery into primary cells by a peptide [J]. Nat Biotechnol, 2009, 27(6): 567-571.[10] Sonia Duarte, Georges Carle, Henrique Faneca, et al. Suicide gene therapy in cancer: where do we stand now?[J]. Cancer Lett, 2012, 324(2): 160-170.[11] Gao Shi-qian, Tian Hua-yu, Xing Zhen-kai, et al. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment[J]. J Control Release, 2016, 243(3): 357-369.[12] An Sai, He Dong-sheng, Ernst Wagner, et al. Peptide-like polymers exerting effective glioma-targeted siRNA delivery and release for therapeutic application[J]. Small, 2015, 11(38): 5142-5150.[13] Huang Shi-xian, Li Jian-feng, Han Liang, et al. Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma[J]. Biomaterials, 2011, 32(28): 6832-6838.[14] Dechao Niu, Liu Zuo-jin, Li Yong-sheng, et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery[J]. Adv Mater, 2014, 26(29): 4947-4953.[15] Wang Guo-wei, Xu Jun-jun, Guo Man-man, et al. A novel core-shell structural phospholipid- functionalized mesoporous silica nanoparticles modified with angiopep-2 as targeting drug delivery system for brain glioma[C]. 石家庄: 中国药学会, 2014: 1-23.[16] 曹政红, 龚珉, 兰静, 等. 血脑屏障内低密度脂蛋白受体相关蛋白-1受体的靶向新型多肽ANG1005[J]. 现代药物与临床, 2012, 27(4): 396-399.[17] Regina A, Demeule M, Che C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2[J]. Br J Pharmacol, 2008, 155(2): 185-97.[18] Wang Lei, Hao Yong-wei, Li Hai-xia, et al. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly (lactic-co-glycolic acid) nanoparticles[J]. J Drug Target, 2015, 23(9): 832-846.[19] Claudia Scaringi, Riccardo Maurizi Enrici, Giuseppe Minniti. Combining molecular targeted agents with radiation therapy for malignant gliomas[J]. Oncotargets Ther, 2013, 2013(6): 1079-1095.[20] Emily S Day, Zhang Lin-na, Patrick A Thompson, et al. Vascular-targeted photothermal therapy of an orthotopic murine glioma model[J]. Nanomedicine, 2012, 7(8): 1133-1148.[21] Tang Yuan, Lei Ting-jun, Romila Manchanda, et al. Simultaneous delivery of chemotherapeutic and thermal-optical agents to cancer cells by a polymeric (PLGA) nanocarrier: an in vitro study[J]. Pharm Res, 2010, 27(10): 2242-2253.[22] Hao Yong-wei, Wang Lei, Zhao Ya-lin, et al. Targeted imaging and chemo-phototherapy of brain cancer by a multifunctional drug delivery system[J]. Macromol Biosci, 2015, 15(11): 1571-1585.[23] Erik C Dreaden, Megan A Mackey, Huang Xiao-hua, et al. Beating cancer in multiple ways using nanogold[J]. Chem Soc Rev, 2011, 40(7): 3391-3404.[24] Ke Heng-te, Wang Jin-rui, Tong Sheng, et al. Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation[J]. Theranostics, 2014, 4(1): 12-23.[25] Erik C Dreaden, Alaaldin M Alkilany, Huang Xiao-hua, et al. The golden age: gold nanoparticles for biomedicine[J]. Chem Soc Rev, 2012, 41(7): 2740-2779.[26] Hao Yong-wei, Zhang Bing-xiang, Zheng Cui-xia, et al. The tumor-targeting core-shell structured DTX-loaded PLGA@Au nanoparticles for chemo-photothermal therapy and X-ray imaging[J]. J Control Release, 2015, 15(11): 545-555.[27] Cameron C Lee, Andrew T Cramer, Francis C Szoka, et al. An intramolecular cyclization reactionis responsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics of hydrazone carboxylate derivatives of doxorubicin[J]. Bioconjug Chem, 2006, 17(5):1364-1368.[28] Wang Feng, Wang Yu-cai, Dou Shuang, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cell[J]. ACS Nano, 2011, 5(5): 3679-3692.[29] Catherine J Murphy, Anand M Gole, John W Stone, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging[J]. Acc Chem Res, 2008, 41(12): 1721-1730.[30] Ruan Shao-bo, Yuan Ming-qing, Zhang Li, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles[J]. Biomaterials, 2015, 37C: 425-435.[31] Zhou Jin-yuan, Erik Tryggestad, Wen Zhi-bo, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nat Med, 2011, 17(1): 130-134.[32] Vladimir Torchilin. Tumor delivery of macromolecular drugs based on the EPR effect [J]. Adv Drug Delivery Rev, 2011, 63(3): 131-135.[33] Siti M Janib, Ara S Moses, J Andrew MacKay. Imaging and drug delivery using theranostic nanoparticles[J]. Adv Drug Deliv Rev, 2010, 62(11): 1052-1063.[34] Margret Schottelius, Burkhardt Laufer, Horst Kessler, et al. Ligands for mapping alphavbeta3-integrin expression in vivo[J]. Acc Chem Res, 2009, 42(7): 969-980.[35] Yan Hui-hui, Wang Lu, Wang Ji-yao. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier[J]. ACS Nano, 2012, 6(1): 410-420.[36] Ni Da-long, Zhang Jia-wen, Bu Wen-bo, et al. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma[J]. ACS Nano, 2014, 8(2): 1231-1242.[37] Ryo Suzuki, Tomoko Takizawa, Yoichi Negishi, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound[J]. J Control Release, 2007, 117(1): 130-136.[38] Suzuki R, Takizawa T, Negishi Y, et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles[J]. J Control Release, 2008, 125(2): 137-144.[39] Yoko Endo-Takahashi, Kotomi Ooaku, Kazuma Ishida, et al. Preparation of Angiopep-2 peptide-modified bubble liposomes for delivery to the brain[J]. Biol Pharm Bull, 2016, 39(6): 977-983.[40] Zhao Li-xia, Di Fan, Wang Da-bin, et al. Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot opticla properties[J]. Nanoscale, 2013, 5(7): 2655-2658.[41] Liu Chang-jun, Zhang Peng, Zhai Xin-yun, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13): 3604-3613.[42] Shouvik Mitra, Sourov Chandra, Shaheen Hamidkhan Pathan, et al. Room temperature and solvothermal green synthesis of self passivated carbon quantum dots[J]. RSC Advances, 2013, 3(10): 3189-3193.[43] Ruan Shao-bo, Qian Jun, Shen Shun, et al. Fluorescent carbonaceous nanodots for noninvasive glioma imaging after Angiopep-2 decoration[J]. Bioconjug Chem, 2014, 25(12): 2252-2259.[44] Silvia Marchesan, Kostas Kostarelos, Alberto Bianco, et al. The winding road for carbon nanotubes in nanomedicine[J]. Mater Today, 2015, 18(1): 12-19.[45] Naoto Saito, Yuki Usui, Kaoru Aoki, et al. Carbon nanotubes: biomaterial applications[J]. Chem Soc Rev, 2009, 38(7): 1897-1903.[46] Houmam Kafa, Julie Tzu-Wen Wang, Noelia Rubio, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo[J]. Biomaterials, 2015, 53(3): 437-452.[47] Michel Demeule, Anthony Regina, Christian Che, et al. Identification and design of peptides as a new drug delivery system for the brain[J]. J Pharmacol Exp Ther, 2008, 324(3): 1064-1072.[48] Houmam Kafa, Julie Tzu-Wen Wang, Noelia Rubio. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo[J]. J Control Release, 2016, 225(3): 217-219. |