Acta Neuropharmacologica ›› 2013, Vol. 3 ›› Issue (3): 39-47.
Previous Articles Next Articles
WANG1 Jie-ting, ZHANG Fang, DING Wen-jun
Online:
2013-06-26
Published:
2014-06-27
Contact:
丁文军,男,教授,博士生导师;研究方向:糖尿病、环境与健康;Tel:+86-010-88256460,E-mail:dingwj@ucas.ac.cn
About author:
王洁婷,女,博士研究生;研究方向:环境污染物的细胞生物学效应;Tel:+86-010-82640499,E-mail:wangjieting08@mails.ucas.ac.cn
Supported by:
国家自然基金课题(No. 11275264、No.21377127),"十一五"国家科技支撑计划项目(2007BAC27B02-2)
WANG1 Jie-ting, ZHANG Fang, DING Wen-jun. Neurotoxic Effects of Metal Oxide Nanomaterials[J]. Acta Neuropharmacologica, 2013, 3(3): 39-47.
[1] Takahiro Kaida, Kota Kobayashi, Maoya Adachi, et al. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics [J]. J Cosmet Sci, 2004, 55(2): 219-220.[2] Nohyun Lee, Hyoungsu Kim, Seung Hong Choi, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets [J]. Proc Natl Acad Sci USA, 2011, 108(7): 2662-2667.[3] Eva Tysiak, Patrick Asbach, Orhan Aktas, et al. Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI [J]. J Neuroinflammation, 2009, 6: 20.[4] Hu Yu-lan, Gao Jian-qing. Potential neurotoxicity of nanoparticles [J]. Int J Pharm, 2010, 394(1-2): 115-121.[5] W M Burch, Passage of inhaled particles into the blood circulation in humans [J]. Circulation, 2002, 106(20): E141-E141.[6] Annette Peters, Bellina Veronesi, Lilian Calderon-Garciduenas, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update [J]. Part Fibre Toxicol, 2006, 3: 13.[7] Alpesh Mistry, Snjezana Stolnik, Lisbeth Illum. Nanoparticles for direct nose-to-brain delivery of drugs [J]. Int J Pharm, 2009, 379(1): 146-157.[8] Paul J A Borm, David Robbins, Stephan Haubold, et al. The potential risks of nanomaterials: a review carried out for ECETOC [J]. Part Fibre Toxicol, 2006, 3: 11.[9] William S Beckett, David F Chalupa, Andrea Pauly-Brown, et al. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study [J]. Am J Respir Crit Care Med, 2005, 171(10): 1129-1135.[10] Gunter Oberdorster, Zachary Sharp, Viorel Atudorei, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats [J]. J Toxicol Environ Health A, 2002. 65(20): 1531-1543.[11] Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system [J]. Environ Health Perspect, 2006, 114(8): 1172-1178.[12] Wang Bing, Feng Wei Y, Wang Meng, et al. Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation [J]. Biol Trace Elem Res, 2007, 118(3): 233-243.[13] Kwon Jung-Taek, Hwang Soon-Kyung, Jin Hua, et al. Body distribution of inhaled fluorescent magnetic nanoparticles in the mice [J]. J Occup Health, 2008, 50(1): 1-6.[14] Kao Yi-yun, Cheng Tsun-Jen, Yang De-ming, et al. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo [J]. J Mol Neurosci, 2012, 48(2): 464-471.[15] Hari S Sharma, Syed F Ali, Saber M Hussain, et al. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches [J]. J Nanosci Nanotechnol, 2009, 9(8): 5055-5072.[16] E Barbu, E Molnar, J Tsibouklis, et al. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier [J]. Expert Opin Drug Deliv, 2009, 6(6): 553-565.[17] Kewal K Jain. Nanobiotechnology-based strategies for crossing the blood-brain barrier [J]. Nanomedicine (Lond), 2012, 7(8): 1225-1233.[18] G Oberdorster, Z Sharp, V Atudorei, et al. Translocation of inhaled ultrafine particles to the brain [J]. Inhalation Toxicology, 2004, 16(6-7): 437-445.[19]吉俊伟, 唐仕川, 白茹, 等. 纳米氧化铝对小鼠血脑屏障通透性的影响 [J]. 毒理学杂志, 2012, 5: 321-326.[20] Hari S Sharma, Saber Hussain, John Schlager, et al. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats [J]. Acta Neurochir Suppl, 2010, 106: 359-364.[21] Ma Ling-lan, Liu Jie, Li Na, et al. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity [J]. Biomaterials, 2010, 31(1): 99-105.[22] Wang Jiang-xue, Liu Ying, Jiao Fang, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles [J]. Toxicology, 2008, 254(1-2): 82-90.[23] Wang Bing, Feng Wei-yue, Zhu Mo-tao, et al. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice [J]. J Nanoparticle Res, 2009, 11(1): 41-53.[24] Rahman M F, Wang J, Patterson T A, et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles [J]. Toxicol Lett, 2009, 187(1): 15-21.[25] Masahiro Kawahara. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases [J]. J Alzheimers Dis, 2005, 8(2): 171-182, 209-215.[26] Li Xiao-bo, Zheng Hao, Zhang Zhi-ren, et al. Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains [J]. Nanomedicine, 2009, 5(4): 473-479.[27] Han Da-dong, Tian Yu-tao, Zhang Tao, et al. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats [J]. Int J Nanomedicine, 2011, 6: 1453-1461.[28] An Lei, Liu Shi-chang, Yang Zhuo, et al. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms [J]. Toxicol Lett, 2012, 213(2): 220-227.[29] Xie Yong-ling, Wang Yi-yi, Zhang Tao, et al. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors [J]. J Biomed Sci, 2012, 19(1): 14.[30] Akiko Yamamoto, Rieko Honma, Masae Sumita, et al. Cytotoxicity evaluation of ceramic particles of different sizes and shapes [J]. J Biomed Mater Res A, 2004, 68(2): 244-256.[31] Liu Zhao-wei, Ren Guo-gang, Zhang Tao, et al. Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles [J]. Toxicology, 2009, 264(3): 179-184.[32] Liu Z, Liu S, Ren G, et al. Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway [J]. J Appl Toxicol, 2011, 31(5): 439-445.[33] Xu L J, Zhao J X, Zhang T, et al. In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents [J]. Environ Toxicol, 2009, 24(3): 211-217.[34] Thomas R Pisanic, Jennifer D Blackwell, Veronica I Shubayev, et al. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons [J]. Biomaterials, 2007, 28(16): 2572-2581.[35] Diana M Stefanescu, Ali Khoshnan, Paul H Patterson, et al. Neurotoxicity of manganese oxide nanomaterials [J]. J Nanoparticle Res, 2009, 11(8): 1957-1969.[36] Mark R Pickard, Divya M Chari. Robust uptake of magnetic nanoparticles (MNPs) by central nervous system (CNS) microglia: implications for particle uptake in mixed neural cell populations [J]. Int J Mol Sci, 2010, 11(3): 967-981.[37] Thomas C Long, Julianne Tajuba, Preethi Sama, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro [J]. Environ Health Perspect, 2007, 115(11): 1631-1637.[38] Wu Jie, Sun Jiao, Xue Yang. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells [J]. Toxicol Lett, 2010, 199(3): 269-276.[39] Liu Shi-chang, Xu Lan-ju, Zhang Tao, et al. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells [J]. Toxicology, 2010, 267(1-3): 172-177.[40] Vanessa Valdiglesias, Carla Costa, Vyom Sharma, et al. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells [J]. Food Chem Toxicol, 2013, 57: 352-361.[41] Thomas C Long, Navid Saleh, Robert D Tilton, et al. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity [J]. Environ Sci Technol, 2006, 40(14): 4346-4352.[42] Xue Y, Wu J, Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro [J]. Toxicol Lett, 2012, 214(2): 91-98.[43] Deng Xiao-yong, Luan Qi-xia, Chen Wen-ting, et al. Nanosized zinc oxide particles induce neural stem cell apoptosis [J]. Nanotechnology, 2009, 20(11): 115101.[44] Yin Yi-xia, Lin Qiang, Sun Hai-ming, et al. Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells [J]. Nanoscale Res Lett, 2012, 7: 439.[45] Zhao Jing-xia, Xu Lan-ju, Zhang Tao, et al. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons [J]. Neurotoxicology, 2009, 30(2): 220-230.[46] Vanessa Valdiglesias, Carla Costa, Gozde Kilic, et al. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles [J]. Environ Int, 2013, 55: 92-100.[47] Huei-wang Anna Jeng, James Swanson. Toxicity of metal oxide nanoparticles in mammalian cells [J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2006, 41(12): 2699-2711.[48] Wang Jie-ting, Deng Xiao-bei, Zhang Fang, et al. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes [J]. Nanoscale Res Lett, 2014, 9(1): 117.[49] Andre Nel, Tian Xia, Lutz Madler, et al. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622-627.[50] Congcong He, Daniel J Klionsky. Regulation mechanisms and signaling pathways of autophagy [J]. Annu Rev Genet, 2009, 43: 67-93.[51] Chen Yong, Lisong Yang, Feng Chao, et al., Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells [J]. Biochem Biophys Res Commun, 2005, 337(1): 52-60.[52] L Yu, Y Lu, N Man, et al. Rare earth oxide nanocrystals induce autophagy in HeLa cells [J]. Small, 2009, 5(24): 2784-2787.[53] Zhang Ying, Yu Chen-guang, Huang Guan-yi, et al. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy [J]. Int J Nanomedicine, 2010, 5: 601-609.[54] Hilary Afeseh Ngwa, Arthi Kanthasamy, Yan Gu, et al. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells [J]. Toxicol Appl Pharmacol, 2011, 256(3): 227-240.[55] Zhao Jing-xia, Yao Yang, Liu Shi-chang, et al. Involvement of reactive oxygen species and high-voltage-activated calcium currents in nanoparticle zinc oxide-induced cytotoxicity in vitro [J]. J Nanoparticle Res, 2012, 14(11): 1-14.[56] Catherine Au, Lysette Mutkus, Allison Dobson, et al. Effects of nanoparticles on the adhesion and cell viability on astrocytes [J]. Biol Trace Elem Res, 2007, 120(1-3): 248-256.[57] Gunter Oberdorster, Alison Elder, Amber Rinderknecht, Nanoparticles and the brain: cause for concern? [J]. J Nanosci Nanotechnol, 2009, 9(8): 4996-5007.[58] Skaper S D, Floreani M, Ceccon M, et al. Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin [J]. Ann N Y Acad Sci, 1999, 890: 107-118.[59] Li Xue-feng, Wang Hui-jun, Qiu Ping-ming, et al. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain [J]. Neurochem Int, 2008, 52(1-2): 256-264.[60] David Butler, Ben A Bahr, Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy [J]. Antioxid Redox Signal, 2006, 8(1-2): 185-196.[61] Li Xue-feng, Wang Hui-jun, Qiu Ping-ming, et al. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain [J]. Neurochem Int, 2008, 52(1-2): 256-264.[61] Wang Bing, Feng Wei-yue, Zhu Mo-tao, et al. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice [J]. Journal of Nanoparticle Research, 2008. 11(1): 41-53.[62] Christina M Powers, Appala R Badireddy, Ian T Ryde, et al. Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition [J]. Environ Health Perspect, 2011, 119(1): 37-44.[63] Paul Borm, Frederick C Klaessig, Timothy D Landry, et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles [J]. Toxicol Sci, 2006, 90(1): 23-32.[64] Tobias J Brunner, Peter Wick, Pius Manser, et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility [J]. Environ Sci Technol, 2006, 40(14): 4374-4381.[65] Song Wen-hua, Zhang Jin-yang, Guo Jing, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles [J]. Toxicol Lett, 2010, 199(3): 389-397.[66] Syed K Sohaebuddin, Paul T Thevenot, David Baker, et al. Nanomaterial cytotoxicity is composition, size, and cell type dependent [J]. Part Fibre Toxicol, 2010, 7: 22.[67] Yin Hong, Philip S Casey, Maxine J McCall, et al. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles [J]. Langmuir, 2010, 26(19): 15399-15408.[68] Chen Yung-chu, Hsieh Wen-yuan, Lee Wen-fu, et al. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier [J]. J Biomater Appl, 2013, 27(7): 909-922. |
[1] | LIN Si-mei, ZHOU Hong, YANG Bao-xue. The Relationship between Hyperuricemia and Chronic Kidney Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 55-64. |
[2] | YANG Jing,YUAN Wen-ying. Toxoplasma Infection on Nerve Tissue Damage and Its Mechanism through the Blood-Brain Barrier [J]. Acta Neuropharmacologica, 2019, 9(5): 40-43. |
[3] | WU Xian,HONG Hao. Bile Acids and Their Receptors are Associated with Central Nervous System Diseases [J]. Acta Neuropharmacologica, 2019, 9(1): 23-30. |
[4] | ZHONG Jia-hong, WANG Hai-tao, XU Jiang-ping. Inhibition of Phosphodiesterase 4 by FCPR16 Protects SH-SY5Y Cells against MPP+-Induced Cell Death through Activating cAMP/PKA/CREB and Epac/Akt Signaling Pathways [J]. Acta Neuropharmacologica, 2018, 8(4): 54-55. |
[5] | BAI Ru-bing,ZHANG Zhong-quan,CEN Juan. The Expression of P-Glycoprotein in Neurons and the Effect of Oxidative Stress on P-Glycoprotein [J]. Acta Neuropharmacologica, 2018, 8(3): 9-. |
[6] | YANG Jie,LIU Fu-jia,TIAN Zi-xia,WANG Le-le,XIE Xin-mei,PANG Xiao-bin. Neuroprotective Effect of Mailuoning on MCAO Rats and Its Antioxidant Mechanism [J]. Acta Neuropharmacologica, 2017, 7(4): 1-7. |
[7] | SU Xiao-mei,ZHANG Dan-shen. Research Progress in Pharmacological Activities of Ginsenoside-Rg3 [J]. Acta Neuropharmacologica, 2017, 7(1): 38-44. |
[8] | WANG Sha-sha,ZHANG Zhao,ZHANG Mei-jin,HU Jin-feng,CHEN Nai-hong. Advances of Nrf 2/ARE Signaling Pathway in the Major Depression Disorder [J]. Acta Neuropharmacologica, 2016, 6(3): 32-37. |
[9] | ZHANG Mei-jin,WANG Sha-sha,ZHANG Zhao,CHEN Nai-hong,HU Jin-feng. Role of Nuclear Transcription Factor Nrf2 in Parkinson’s Disease [J]. Acta Neuropharmacologica, 2016, 6(1): 35-40. |
[10] | LOU Yu-xia,ZHANG Zhao,WANG Zhen-zhen,JIANG Yi-na,ZHANG Yi,LI Lin,CHEN Nai-hong. Parkinson Associated DJ-1 Gene and Oxidative Stress [J]. Acta Neuropharmacologica, 2016, 6(1): 58-64. |
[11] | WANG Ying-ying, SONG Xiu-yun, WANG Qi, CHEN Nai-hong. Application of Natural Antioxidants in the Progress of Alzheimer's Disease [J]. Acta Neuropharmacologica, 2015, 5(6): 30-34. |
[12] | ZHANG Tao,ZHANG Bin,WANG Pei-yi,ZHOU Tao,QIN Xue-mei. Research Progress on Chemical Compounds and Pharmacological Effects of Single Drug of Dingkundan Prescription [J]. Acta Neuropharmacologica, 2015, 5(6): 40-50. |
[13] | WANG Lun-zheng, XIE Wen-juan, TANG Tie-Shan. Neural Stem Cells, Adult Neurogenesis and Cell Therapy for Neurodegenerative Diseases [J]. Acta Neuropharmacologica, 2015, 5(3): 46-64. |
[14] | YAN Juan,ZHENG Mao-dong. Protective Effects and Mechanisms of L-carnitine in the Nervous System [J]. Acta Neuropharmacologica, 2015, 5(1): 45-50. |
[15] | ZHOU Si-bai, LI Jin-ze, LIU Rui, ZHANG Tian-tai. Recent Development of the Flavonoids on the Treatment of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2015, 5(1): 51-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||