[1] J William Langston. Parkinson's disease: current and future challenges [J]. Neurotoxicology, 2002, 23(4-5): 443-450.[2] S Papapetropoulos, N Adi, J Ellul. A prospective study of familial versus sporadic Parkinson's disease [J] .Neurodegener Dis, 2007, 4(6): 424-427.[3] Malu G Tansey, Melissa K McCoy, Tamy C Frank-Cannon.Neuroinflammatory meehanisms in Parkinson’s disease:potential environmentsl triggers, pathways, and targets for early therapeutic intervention [J].Exp Neurol, 2007, 208(1): 1-25.[4] Gao Hui-ming,Jiang Jan-wei,Belinda Wilson, et al. Microglial aetivation-mediated delayed and progressive degener-ation of rat nigral dopaminergic neurons:relevance to Parkinson’s disease [J]. J Neurochem, 2002, 81(6): 1285-1297.[5] A R Carta, L Frau, A Pisanu, et al. Rosiglitazone decreases peroxisome proliferator receptorgamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience, 2011, 27(194): 250–261[6] Hideyuki Takeuchi, Jin Shi-jie, Wang Jin-yan, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner [J]. Biol Chem, 2006, 281(30): 21362-21368.[7] Vicki Waetzig, Karen Czeloth, Ute Hidding, et al. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia [J]. Glia, 2005, 50(3): 235-246.[8] Dennis J Stuehr, Olufunmilayo A Fasehun, Nyoun Soo Kwon, et al. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenylene-iodonium and its analogs[J]. FASEB, 1991, 5: 98-103.[9] C S Raman, Li Hui-ying, Pavel Martasek, et al. Crystal structure of constitutive endothelial nitric oxide synthase: A paradigm for pteridine function involving a novel metal center [J]. Cell, 1998, 95(7): 939-950.[10] Annual J Hobbs, Annie Higgs, Salvador Moncada. Inhibition of nitric oxide synthase as a potential therapeutic target[J]. Annu Rev Pharmacol Toxicology, 1999, 39: 191-220.[11] W K Kim, Y Kan, D Ganea, et al. Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-a production in injured spinal cord and in activated microglia via cAMP-dependent pathway[J]. Neuroscience, 2000, 273: 3622-3630.[12] Won-Ki Kim, Pil-Geum Jang, Moon-Sook Woo, et al. A new anti-inflammatory agent KL-1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia [J]. Neuropharmacol, 2004, 47(2): 243-252[13] W J Streit, J R Conde, S E Fendrick, et al. Role of microglia in the central nervous system's immune response [J]. Neurol Res, 2005, 27(7): 685-691.[14] M Reale, C Iarlori, A Thomas, et al. Peripheral cytokines profile in Parkinson’s disease[J]. Brain Behav Immun, 2009, 23(1): 55–63.[15] K Bendtzen. Why is too little TNF bad? [J]. Cytokine, 1991, 3(6): 636-637.[16] Richard J Armitage. Tumor necrosis factor receptor superfamily members and their ligands[J]. Curr Opin Immun, 1994, 6(3): 407-413,.[17] Shi Kun, Wang Dao-de, Cao Xiao-jian, et al. Endoplasmic reticulum stress signaling is involved in mitomycin C(MMC)-induced apoptosis in human fibroblasts via PERK pathway [J]. PLoS One, 2013, 8(3): e59330.[18] Christoph Richter, Vladimir Gogvadze, Renato Laffranchi, et al. Oxidants in mitochondria:from physiology to disease[J]. Biochim Biophys Acta, 1995, 1271(1): 67-74.[19] Tomomi Kuwana, Jesse J Smith, Marta Muzio, et al. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome C [J]. Biol.Chem, 1998, 273(26): 16589-16594.[20] J M Adams, S Cory. The Bcl-2 protein family: arbiters of cell survival [J]. Science, 1998, 281(5381): 1322-1325.[21] M S Brassesco, G M Roberto, A G Morales, et al. Inhibition of NF-κB by dehydroxymethylepoxyquinomicin suppresses invasion and synergistically potentiates temozolomide and γ -radiation cytotoxicity in glioblastoma cells[J]. Chemother Res Pract, 2013, 1155: 593020.[22] Michelle L Block, Luigi Zecca, Jau-Shyong Hong. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms [J]. Nat Rev Neurosci, 2007, 8(1): 57-69[23] Liu Bin, Du Lina, Jau-Shyong Hong, Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation[ J ]. J Pharmacol Exp Ther, 2000, 293(2): 607-617.[24] Eiji Hasegawa, Koichiro Takasgige, Tomonari Oishi, et al. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles[J]. Biochem Biophys Res Commun, 1990, 170(3): 1049-1055.[25] Gao Hui-ming, Hong Jau-shyong, Zhang Wan-qin, et a1. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons [J]. J Neurosci, 2002, 22(3): 782-790.[26] Gao Hui-ming, Jiang Jan-wei, Belinda Wilson, et a1. Microglial Aetivation-mediated Delayed and Progressive Degener-ation of Rat Nigral Dopaminergic Neurons: Relevance to Parkinson’s Disease, [J]. J Neurochem, 2002, 81(6): 1285-1297.[27] Gao Hui-ming, Hong Jau-Shyong, Zhang Wan-qin, et al.Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons[J]. J Neurosci, 2002, 22(3): 782-790.[28] James A Waschek.VIP and PACAP receptor-mediated actions on cell proliferation and survival, [J]. Ann NY Acad Sci, 1996, 805: 290-300. |