Acta Neuropharmacologica ›› 2018, Vol. 8 ›› Issue (2): 8-25.DOI: 10.3969/j.issn.2095-1396.2018.02.002
Previous Articles Next Articles
WANG Jin-hui1,HUANG Li2,CHEN Na1
Online:
2018-04-26
Published:
2018-04-16
Contact:
王晋辉,博士,特聘教授;研究方向:神经药理学;Tel:+86-10-64888472,E-mail:jhw@ibp.ac.cn
Supported by:
国家基础研究计划项目(No. 2013CB531304、2016YFC1307100),国家自然科学基金项目(No. 81671071、81471123)
CLC Number:
R964
WANG Jin-hui,HUANG Li,CHEN Na. Ischemic Injury of Cortical GABAergic Neurons:Vulnerability,Mechanism and Pathological Impacts[J]. Acta Neuropharmacologica, 2018, 8(2): 8-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2018.02.002
【1】 Christopher R, Nagaraja D, Shankar S K. Homocysteine and cerebral stroke in developing countries[J]. Curr Med Chem, 2007, 14(22): 2393-2401.【2】 Francesco Della Corte, Gian Luca Vignazia, M Cavaglia, et al. Stroke patients, what to do and what to avoid[J]. Minerva Anestesiol, 2002, 68(4): p. 273-7.【3】 Michael Brainin, Natan M Bornstein, Gudrun Boysen, et al. Acute neurological stroke care in Europe: results of the European Stroke Care Inventory[J]. Eur J Neurol, 2000, 7(1): 5-10.【4】 Kuller L H. Epidemiology and prevention of stroke, now and in the future[J]. Epidemiol Rev, 2000, 22(1): 14-17.【5】 Timothy Ingall. Stroke--incidence, mortality, morbidity and risk[J]. J Insur Med, 2004, 36(2): 143-52.【6】 Antonio Pinto, Antonino Tuttolomando, Domenico Di Raimondo, et al. Cerebrovascular risk factors and clinical classification of strokes[J]. Semin Vasc Med, 2004, 4(3): 287-303.【7】 Gustavo Saposnik, Oscar Del Brutto. Stroke in South America: a systematic review of incidence, prevalence, and stroke subtypes[J]. Stroke, 2003, 34(9): 2103-2107.【8】 Angel Chamorro. Immediate anticoagulation in acute focal brain ischemia revisited: gathering the evidence[J]. Stroke, 2001, 32(2): 577-578.【9】 Dalkara, T, Michael A Moskowitz. Recent developments in the experimental stroke[J]. NeuroScience News, 1999, 2(5): 20-27.【10】 Devasenapathy A, V C Hachinski. Current treatment of acute ischemic stroke[J]. NeuroScience News, 1999, 2(5): 4-13.【11】 Sebastian Jander, Michael Schroeter, Andreas Saleh. Imaging inflammation in acute brain ischemia[J]. Stroke, 2007, 38(2 Suppl): 642-645.【12】 Christopher C Leonardo, Keith R Pennypacker. Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury[J]. J Neuroinflammation, 2009, 6: 13.【13】 Macchi, L, Nathalie Sorel, Luc Christiaens. Aspirin resistance: definitions, mechanisms, prevalence, and clinical significance[J]. Curr Pharm Des, 2006, 12(2): 251-258.【14】 Keith W Muir, M Roberts. Thrombolytic therapy for stroke: a review with particular reference to elderly patients[J]. Drugs Aging, 2000, 16(1): 41-54.【15】 Alfredo Puca. Thrombolysis in cerebral ischemia. A review of clinical and experimental data[J]. J Neurosurg Sci, 1993, 37(2): 63-70.【16】 Bruce D Spiess. Ischemia--a coagulation problem? [J] J Cardiovasc Pharmacol, 1996, 27( Suppl 1): S38-41.【17】 Antonino Tuttolomondo, Riccardo Di Sciacca, et al. Neuron protection as a therapeutic target in acute ischemic stroke[J]. Curr Top Med Chem, 2009, 9(14): 1317-34.【18】 Vaughan C J, N Delanty. Neuroprotective properties of statins in cerebral ischemia and stroke[J]. Stroke, 1999, 30(9): 1969-1973.【19】 Myron D Ginsberg. Neuroprotection for ischemic stroke: past, present and future[J]. Neuropharmacology, 2008, 55(3): 26.【20】 Myron D Ginsberg. Current status of neuroprotection for cerebral ischemia: synoptic overview[J]. Stroke, 2009, 40(3 Suppl): S111-114.【21】 Era Taoufik, Lesley Probert. Ischemic neuronal damage[J]. Curr Pharm Des, 2008, 14(33): 3565-3573.【22】 Eduardo Candelario-Jalil. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics[J]. Curr Opin Investig Drugs, 2009, 10(7): 644-654.【23】 Era Taoufik, Lesley Probert. Probert, Ischemic neuronal damage[J]. Current Pharm Des, 2008, 14(33): 3565-3573.【24】 Tobias Back, O G Schuler. The natural course of lesion development in brain ischemia[J]. Acta Neurochir Suppl, 2004, 89: 55-61.【25】 Tobias Back, Thomas Hemmen, Olaf G Schuler. Lesion evolution in cerebral ischemia[J]. J Neurol, 2004, 251(4): 388-397.【26】 Matthias Endres, Ulrich Dirnagl. Ischemia and stroke[J]. Adv Exp Med Biol, 2002, 513: 455-473.【27】 Curin Y, Marie-Francoise Ritz, Ramaroson Andriantsitohaina. Andriantsitohaina, Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes[J]. Cardiovasc Hematol Agents Med Chem, 2006, 4(4): 277-288.【28】 Panickar K S, Norenberg M D, Astrocytes in cerebral ischemic injury: morphological and general considerations[J]. Glia, 2005, 50(4): 287-298.【29】 Swanson R A, Ying W, Kauppinen T M. Astrocyte influences on ischemic neuronal death[J]. Curr Mol Med, 2004, 4(2): 193-205.【30】 Brouns R, P P De Deyn. The complexity of neurobiological processes in acute ischemic stroke[J]. Clin Neurol Neurosurg, 2009, 111(6): 483-495.【31】 Fan Yuan, Deng Ping, Wang Yu-Chi, et al. Transient cerebral ischemia increases CA1 pyramidal neuron excitability[J]. Exp Neurol, 2008, 212(2): 415-421.【32】 Johansen F F. Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations[J]. Acta Neurol Scand Suppl, 1993, 150: 1-32.【33】 Mergenthaler, P., U. Dirnagl, and A. Meisel, Pathophysiology of stroke: lessons from animal models[J]. Metab Brain Dis, 2004, 19(3-4): 151-167.【34】 Georg Johannes Muller, Christine Stadelmann, Lone Bastholm, et al. Ischemia leads to apoptosis--and necrosis-like neuron death in the ischemic rat hippocampus[J]. Brain Pathol, 2004, 14(4): 415-424.【35】 Alexander G Nikonenko, Lidijia Radenovic, Pavle Andjus, et al. Structural features of ischemic damage in the hippocampus[J]. Anat Rec (Hoboken), 2009, 292(12): 1914-1921.【36】 Wang Jin-Hui. Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons[J]. Brain Research Bulletin, 2003, 60(1-2): 53-58.【37】 Castellanos M, Serena J. Applicability of biomarkers in ischemic stroke[J]. Cerebrovasc Dis, 2007, 24 (Suppl 1): 7-15.【38】 Kristian P Doyle, Roger P Simon, Mary P Stenzel-Poore. Mechanisms of ischemic brain damage[J]. Neuropharmacology, 2008, 55(3): 310-318.【39】 Hou Sheng-tao, John P MacManus. Molecular mechanisms of cerebral ischemia-induced neuronal death[J]. Int Rev Cytol, 2002, 221: 93-148.【40】 Alberto Camacho, Lourdes Massieu. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death[J]. Arch Med Res, 2006, 37(1): 11-18.【41】 Leif Hertz. Bioenergetics of cerebral ischemia: a cellular perspective[J]. Neuropharmacology, 2008, 55(3): 289-309.【42】 Huang Li, Wang Chun, Shidi Zhao, et al. PKC and CaMK-II inhibitions coordinately rescue ischemia-induced GABAergic neuron dysfunction[J]. Oncotarget, 2017, DOI: 10.18632/oncotarget.16947.【43】 Ye Hui, Shirin Jalini, Zhang Liang, et al. Early ischemia enhances action potential-dependent, spontaneous glutamatergic responses in CA1 neurons[J]. J Cereb Blood Flow Metab, 2010, 30(3): 555-565.【44】 Michelle Aarts, Mark Arundine, Michael Tymianski. Novel concepts in excitotoxic neurodegeneration after stroke[J]. Expert Rev Mol Med, 2003, 5(30): 1-22.【45】 Arabadzisz D, Freund T F. Changes in excitatory and inhibitory circuits of the rat hippocampus 12-14 months after complete forebrain ischemia[J]. Neuroscience, 1999, 92(1): 27-45.【46】 Li Huang, Chen Na, Ge Ming, et al. Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia[J]. Biochemical and Biophysical Research Communications, 2010, 394: 709-714.【47】 Li Huang, Zhao Shi-di, Lu Wei, et al., Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity[J]. PLoS One, 2015, 10(10): e0140324.【48】 Ashfaq Shuaib, Myungsook Breker-Klassen. Inhibitory mechanisms in cerebral ischemia: a brief review[J]. Neuroscience Biobehavior Review, 1997, 21(2): 219-226.【49】 Freund T F, Buzsaki G, Interneurons of the hippocampus[J]. Hippocampus, 1996, 6: 347-470.【50】 Lu Wei, Wen Bo, Zhang Feng-yu, et al. Voltage-independent sodium channels emerge for an expression of activity-induced spontaneous spikes in GABAergic neurons[J]. Mol Brain, 2014, 7(1): 38.【51】 Yu Jian-dong, Qian Hao, Wang Jin-hui. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes[J]. Mol Brain, 2012, 5(1): 26.【52】 Michelle M Aarts, Michael Tymianski. Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors[J]. Biochem Pharmacol, 2003, 66(6): 877-886.【53】 James J P Alix. Recent biochemical advances in white matter ischaemia[J]. Eur Neurol, 2006, 56(2): 74-77.【54】 Seok Joon Won, Doo Yeon Kim, Byoung Joo Gwag. Cellular and molecular pathways of ischemic neuronal death[J]. J Biochem Mol Biol, 2002, 35(1): 67-86.【55】 Mark Arundine, Michael Tymianski. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity[J]. Cell Calcium, 2003, 34(4-5): 325-337.【56】 Daniele Bano, Pierluigi Nicotera. Ca2+ signals and neuronal death in brain ischemia[J]. Stroke, 2007, 38(2 Suppl): 674-676.【57】 Kinga Szydlowska, Michael Tymianski. Calcium, ischemia and excitotoxicity[J]. Cell Calcium, 2010, 47(2): 122-129.【58】 Blaine C White, Jonathon M Sullivan, Donald J DeGracia, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury[J]. J Neurological Sciences, 2000, 179(1-2): 1-33.【59】 Teresa Carbonell, Ramon Rama. Iron, oxidative stress and early neurological deterioration in ischemic stroke[J]. Curr Med Chem, 2007, 14(8): 857-874.【60】 Forder J P, M Tymianski. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules[J]. Neuroscience, 2009, 158(1): 293-300.【61】 Schmidley J W. Free radicals in central nervous system ischemia[J]. Stroke, 1990, 21(7): 1086-1090.【62】 Lionel Carmant, Gavin Woodhal, Mohamed Ouardouz, et al. Interneuron-sepcific Ca2+ responses linked to metabotropic and ionotropic glutamate receptors in rat hippocampal slices[J]. Eur J Neurosci, 1997, 9: 1625-1635.【63】 Qi Yu-long, Li Huang, Ni Hong, et al. Intracellular Ca2+ regulates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells differently[J]. Biochemical and Biophysical Research Communications, 2009, 381(1): 129-133.【64】 Wang Jin-hui, Paul Kelly. Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1[J]. J Physiol (Lond), 2001, 533(2): 407-422.【65】 Wang Jin-hui, Zhang Mei. Differential modulation of glutamatergic and cholinergic synapses by calcineurin in hippocampal CA1 fast-spiking interneurons[J]. Brain Research, 2004, 1004(1-2): 125-135.【66】 Eduardo E Benarroch. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system[J]. Mayo Clin Proc, 2005, 80(10): 1326-1338.【67】 Paola Bezzi, Maria Domercq, Sabino Vesce, et al. Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications[J]. Prog Brain Res, 2001, 132: 255-265.【68】 Stevens B. Neuron-astrocyte signaling in the development and plasticity of neural circuits[J]. Neurosignals, 2008, 16(4): 278-288.【69】 Chen Na, Chen Shu-li,et al., The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings[J]. Biochemical and Biophysical Research Communications, 2006, 340: 151-157.【70】 Chen Na, Chen Xin, Wang Jin-hui. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding[J]. J Cell Science, 2008, 121(17): 2961-2971.【71】 Wang Jin-hui, Wei Jian, Chen Xin, et al. The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding[J]. J Cell Science, 2008, 121(17): 2951-2960.【72】 Block F. Global ischemia and behavioural deficits[J]. Prog Neurobiol, 1999, 58(3): 279-295.【73】 Suzuki R, Yamaguchi T, Kirino T, et al. The effects of 5-minute ischemia in Mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes[J]. Acta Neuropathol, 1983, 60(3-4): 207-216.【74】 Miller B, Nagy B L Finlay, Chance B, et al. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity[J]. Exp Neurol, 1993, 124(2): 326-342.【75】 Mennel H D, Sauer D Rossberg, Bielenberg G W, et al. Morphology of tissue damage due to experimental cerebral ischemia in rats[J]. Exp Pathol, 1988, 35(4): 219-230.【76】 Mennel H D, H El-Abhar, M Schilling, et al. Morphology of tissue damage caused by permanent occlusion of middle cerebral artery in mice[J]. Exp Toxicol Pathol, 2000, 52(5): 395-404.【77】 del Zoppo G J, Mabuchi T. Cerebral microvessel responses to focal ischemia[J]. J Cereb Blood Flow Metab, 2003, 23(8): 879-894.【78】 Wisniewski H M, Ryszard Pluta, Albert Lossinsky, et al. Ultrastructural studies of cerebral vascular spasm after cardiac arrest-related global cerebral ischemia in rats[J]. Acta Neuropathol, 1995, 90(5): 432-440.【79】 Brad R S Broughton, David C Reutens, Christopher G Sobey. Apoptotic mechanisms after cerebral ischemia[J]. Stroke, 2009, 40(5): e331-339.【80】 Rona G Giffard, Raymond A Swanson. Ischemia-induced programmed cell death in astrocytes[J]. Glia, 2005, 50(4): 299-306.【81】 Suresh L Mehta, Namratta Manhas, Ram Raghubir. Molecular targets in cerebral ischemia for developing novel therapeutics[J]. Brain Res Rev, 2007, 54(1): 34-66.【82】 Nakka V P, Gusain A, Mehta S L, et al. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities[J]. Mol Neurobiol, 2008, 37(1): 7-38.【83】 Chen Jun, Jin Kun-lin, Chen Min-zhi, et al. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death[J]. J Neurochem, 1997, 69(1): 232-245.【84】 Robert S B Clark, Chen Jun, Simon C Watkins, et al. Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats[J]. J Neurosci, 1997, 17(23): 9172-9182.【85】 Nakashima K. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat[J]. J Neurotrauma, 1999, 16(2): 143-151.【86】 Newcomb J K, Zhao X, Pike B R, et al. Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat[J]. Exp Neurol, 1999, 158(1): 76-88.【87】 Pang Zhen, Vinala Bondada, Tomoko Sengoku, et al. Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology[J]. J Neuropathol Exp Neurol, 2003, 62(6): 633-643.【88】 Johansen F F, Diemer N H. Temporal profile of interneuron and pyramidal cell protein synthesis in rat hippocampus following cerebral ischemia[J]. Acta Neuropathol, 1990, 81(1): 14-19.【89】 Jon R Inglefield, Christina A Wilson, Rochelle D Schwartz-Bloom。 Effect of transient cerebral ischemia on gamma-aminobutyric acidA receptor alpha 1-subunit-immunoreactive interneurons in the gerbil CA1 hippocampus[J]. Hippocampus, 1997, 7(5): 511-523.【90】 Liu Zhan, Huo Wei, Sun Wei, et al., A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR(1),(5) activation[J]. Neurol Sci, 2013, 34(7): 1189-1195.【91】 Irshad H Chaudry. Cellular mechanisms in shock and ischemia and their correction[J]. Am J Physiol, 1983, 245(2): R117-134.【92】 Dale Corbett, Suzanne Nurse. The problem of assessing effective neuroprotection in experimental cerebral ischemia[J]. Prog Neurobiol, 1998, 54(5): 531-548.【93】 Heiko J Luhmann. Ischemia and lesion induced imbalances in cortical function[J]. Prog Neurobiol, 1996, 48(2): 131-166.【94】 Kresimir Krnjevic. Electrophysiology of cerebral ischemia[J]. Neuropharmacology, 2008, 55(3): 319-333.【95】 Diego Centonze, Saulle E, Pisani A, et al. Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischemia[J]. Brain, 2001, 124(Pt9): 1855-1865.【96】 Martine Hamann, David J Rossi, Claudia Mohr, et al., The electrical response of cerebellar Purkinje neurons to simulated ischemia[J]. Brain, 2005, 128: 2408-2420.【97】 Roettger V, Lipton P. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia[J]. Neuroscinece, 1996, 75(3): 677-685.【98】 Schwartz-Bloom R D, Renu Sah. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia[J]. J Neurochem, 2001, 77(2): 353-371.【99】 Kortaro Tanaka. Alteration of second messengers during acute cerebral ischemia: adenylate cyclase, cyclic AMP-dependent protein kinase and cyclic AMP response element binding protein[J]. Progress in Neurobiology, 2001, 65(2): 173-207.【100】 Dennis W Choi. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage[J]. Trends Neurosci, 1988, 11(10): 465-469.【101】 Won, S.J., D.Y. Kim, and B.J. Gwag, Cellular and molecular pathways of ischemic neuronal death[J]. Journal of Biochemical and Molecular Biology, 2002, 35(1): 67-86.(与54重复)【102】 Inage Y W, Itoh M, Wada K, et al. Expression of two glutamate transporters, GLAST and EAAT4, in the human cerebellum: their correlation in develoment and neonatal hypoxia-ischemic damage[J]. J Neuropathology and Experimental Neurology, 1998, 57(6): 554-562.【103】 Akihide Yamashita, Koshi Makita, Toshihiko Kuroiwa, et al. Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4[J]. Neuroscience Research, 2006, 55(3): 264-270.【104】 Block, F., Global ischemia and behavioural deficits[J]. Prog. Neurobiol., 1999, 58: 279-295.与72重复【105】 Peter Lipton. Ischemic cell death in brain neurons[J]. Physiological Review, 1999, 79(4): 1431-1568.【106】 Metha, S.L., N. Manhas, and R. Raghubir, Molecular targets in cerebral ischemia for developing novel therapeutics[J]. Brain Research Review, 2007, 54(1): 34-66.(与81重复)【107】 Rochelle D Schwartz-Bloom, Renu Sah. r-aminobutyric acid A neurotransmission and cerebral ischemia[J]. J Neurochemistry, 2001, 77: 353-371.【108】 John P Welsh, Genevieve S Yuen, Dimitris Placantonakis, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus[J]. Advanced Neurology, 2002, 89: 331-359.【109】 Zhao Shi-di, Chen Na, Yang Zhi-lai, et al. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+[J]. Biochemical and Biophysical Research Communications, 2008, 366(2): 401-407.【110】 Shepherd G M. Electronic properties of axons and dendrites[M]. From Molecular to Networks: An Introduction to Cellular and Molecular Neuroscience, J H Byrne, J L Roberts, 2004, New York: Elsevier Science (USA): 91-113.【111】 Li Y, Z Lei, Xu Z C. Enhancement of inhibitory synaptic transmission in large aspiny neurons after transient cerebral ischemia[J]. Neuroscience, 2009, 159(2): 670-681.【112】 Zhan Ren-zhi, J Victor Nadler, Rochelle D Schwartz-Bloom. Impaired firing and sodium channel function in CA1 hippocampal interneurons after transient cerebral ischemia[J]. J Cereb Blood Flow Metab, 2007, 27(8): 1444-1452.【113】 Makoto Saji, Melissa Cohen, Alan D Blau, et al. Transient forebrain ischemia induces delayed injury in the substantia nigra reticulata: degeneration of GABA neurons, compensatory expression of GAD mRNA[J]. Brain Res, 1994, 643(1-2): 234-244.【114】 Schwartz-Bloom R D, Miller K A, Evenson D A, et al. Benzodiazepines protect hippocampal neurons from degeneration after transient cerebral ischemia: an ultrastructural study[J]. Neuroscience, 2000, 98(3): 471-484.【115】 Paolo Calabresi, Letizia M Cupini, Diego Centonze, et al. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia[J]. Ann Neurol, 2003, 53(6): 693-702.【116】 Helene Benveniste, Jorgen Drejer, Arne Schousboe, et al., Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis[J]. J Neurochemistry, 1984, 43: 1369-1374.【117】 Bao W L, Williams A J, Faden A I, et al. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia[J]. Brain Res, 2001, 922(2): 173-179.【118】 Rao Muralikrishna Adibhatla, James F Hatcher, R J Dempsey. Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil[J]. Neurosci Lett, 2000, 293(1): 1-4.【119】 Kazutoshi Murotomi, Norio Takagi, Gen Takayanagi, et al. mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia[J]. J Neurochem, 2008, 105(5): 1625-1634.【120】 Tania Scartabelli, Elisabetta Gerace, Elisa Landucci, et al. Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway: a novel postconditioning strategy? [J] Neuropharmacology, 2008, 55(4): 509-516.【121】 Norio Takagi, Shintaro Besshoh, Hirotsugu Morita, et al. Metabotropic glutamate mGlu5 receptor-mediated serine phosphorylation of NMDA receptor subunit NR1 in hippocampal CA1 region after transient global ischemia in rats[J]. Eur J Pharmacol, 2010, 644(1-3): 96-100.【122】 Uta Strasser, Doug Lobner, M Margarita Behrens, et al. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures[J]. Eur J Neurosci, 1998, 10(9): 2848-55.【123】 Pellegrini-Giampietro D E, Cozzi A, Peruginelli F, et al. 1-Aminoindan-1,5-dicarboxylic acid and (S)-(+)-2-(3'-carboxybicyclo[1.1.1] pentyl)-glycine, two mGlu1 receptor-preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischaemia[J]. Eur J Neurosci, 1999, 11(10): 3637-3647.【124】 Claudia G Werner, Tania Scartabelli, Tristano Pancani, et al. Differential role of mGlu1 and mGlu5 receptors in rat hippocampal slice models of ischemic tolerance[J]. Eur J Neurosci, 2007, 25(12): 3597-3604.【125】 Valeria Bruno, Giuseppe Battaglia, Agatta Copani, et al. An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors[J]. Eur J Neurosci, 2001, 13(8): 1469-1478.【126】 Agnes Simonyi, J P Zhang, Grace Sun, Changes in mRNA levels for group I metabotropic glutamate receptors following in utero hypoxia-ischemia[J]. Brain Res Dev Brain Res, 1999, 112(1): 31-37.【127】 Gerald A Dienel, Leif Hertz. Astrocytic contributions to bioenergetics of cerebral ischemia[J]. Glia, 2005, 50(4): 362-388.【128】 Michele Zoli, Giuseppe Biagini, Rosaria Ferrari, et al. Neuron-glia cross talk in rat striatum after transient forebrain ischemia[J]. Adv Exp Med Biol, 1997, 429: 55-68.【129】 David J Rossi, James D Brady, Claudia Mohr. Astrocyte metabolism and signaling during brain ischemia[J]. Nat Neurosci, 2007, 10(11): 1377-1386.【130】 Sonia Villapol, Antoinette Gelot, Sylvain Renolleau, et al. Astrocyte responses after neonatal ischemia: the yin and the yang[J]. Neuroscientist, 2008, 14(4): 339-344.【131】 Torben Bruhn, Line M Levy, Mogens Nielsen, et al. Ischemia induced changes in expression of the astrocyte glutamate transporter GLT1 in hippocampus of the rat[J]. Neurochem Int, 2000, 37(2-3): 277-285.【132】 Camacho A, Massieu L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death[J]. Arch Med Res, 2006, 37(1): 11-18.【133】 McIver S R, Muccigrosso M, Gonzales E R, et al. Oligodendrocyte degeneration and recovery after focal cerebral ischemia[J]. Neuroscience, 2010, 169(3): 1364-1375.【134】 Bruce E McKay, Ray W Turner. Physiological and morphological development of the rat cerebellar Purkinje cell[J]. J Physiology (London), 2005, 567(Pt3): 829-850.【135】 Chris J McBain, Andre Fisahn. Interneurons unbound[J]. Nature Reviews Neuroscience, 2001, 2(1): 11-23.【136】 Ni Hong, Huang Li, Chen Na, et al. Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit[J]. PLoS ONE, 2010, 5(10): e13736.【137】 Peter Somogyi, Thomas Klausberger. Defined types of cortical interneurone structure space and spike timing in the hippocampus[J]. J Physiology (London), 2005, 562(1): 9-29.【138】 Michael Wehr, Anthony M Zador. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex[J]. Nature, 2003, 426: 442-446.【139】 Chen Na, Zhu Yan, Gao Xin, et al. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons[J]. Biochemical and Biophysical Research Communications, 2006, 346(1): 281-287.【140】 Chen Na, Chen Xin, Yu Jian-dong, et al. After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels[J]. Biochemical and Biophysical Research Communications, 2006, 346(3): 938-945.【141】 Chen Na, Yu Jian-dong, Qian Hao, et al. Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons[J]. PLoS ONE, 2010, 5(7): e11868 【142】 Raphael Hourez, Karima Azdad, Gilles Vanwalleghem, et al. Activation of protein kinase C and inositol 1,4,5-triphosphate receptors antagonistically modulate voltage-gated sodium channels in striatal neurons[J]. Brain Res, 2005, 1059(2): 189-96.【143】 Li Ming, James W West, Yvonne Lai, et al. Functional modulation of brain sodium channels by cAMP-dependent phosphorylation[J]. Neuron, 1992, 8(6): 1151-1159.【144】 Hao Zhi-bin, Pei Dong-sheng, Guan Qiu-hua, et al. Calcium/calmodulin-dependent protein kinase II (CaMKII), through NMDA receptors and L-Voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus[J]. Brain Res Mol Brain Res, 2005, 140(1-2): 55-62.【145】 Hiroshi Onodera, Yasundo Yamasaki, Kyuya Kogure, et al. Calcium/calmodulin-dependent protein kinase II and protein phosphatase 2B (calcineurin) immunoreactivity in the rat hippocampus long after ischemia[J]. Brain Res, 1995, 684(1): 95-98.【146】 Teresa Zalewska, B Zablocka, Krystyna Domanska-Janik. Changes of Ca2+/calmodulin-dependent protein kinase-II after transient ischemia in gerbil hippocampus[J]. Acta Neurobiol Exp (Wars), 1996, 56(1): 41-48.【147】 Hubert Monnerie, Peter D Le Roux. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro[J]. Exp Neurol, 2007, 205(2): 367-382.【148】 Gabriella Nyitrai, Katalin A Kekesi, Gabor Juhasz. Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements[J]. Curr Top Med Chem, 2006, 6(10): 935-940.【149】 Li Hhi-ling, Ruth E Siegel, Rochelle D Schwartz. Rapid decline of GABAA receptor subunit mRNA expression in hippocampus following transient cerebral ischemia in the gerbil[J]. Hippocampus, 1993, 3(4): 527-537.【150】 Norio Akaike. Time-dependent rundown of GABA response in mammalian cns neuron during experimental anoxia[J]. Obes Res, 1995, 3(Suppl 5): 769S-777S.【151】 Zhan Ren-zhi, J Victor Nadler, Rochelle D Schwartz-Bloom. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia[J]. J Cereb Blood Flow Metab, 2006, 26(1): 112-24.【152】 Tae-Cheon Kang, Seung-Kook Park, In-koo Hwang, et al. Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia[J]. Brain Res, 2002, 944(1-2): 10-18.【153】 Li Yan, Glenn Dave Blanco, Lei Zhi-gang, et al. Increased GAD expression in the striatum after transient cerebral ischemia[J]. Mol Cell Neurosci, 2010, 45(4): 370-377.【154】 Raghu Vemuganti. Decreased expression of vesicular GABA transporter, but not vesicular glutamate, acetylcholine and monoamine transporters in rat brain following focal ischemia[J]. Neurochem Int, 2005, 47(1-2): 136-142.【155】 Liang R, Pang Z P, Deng P, et al. Transient enhancement of inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons after cerebral ischemia[J]. Neuroscience, 2009, 160(2): 412-418.【156】 Maxim Dobretsov, Joseph R Stimers. Neuronal function and alpha3 isoform of the Na/K-ATPase[J]. Front Biosci, 2005, 10(1-3): 2373-2396.【157】 Jeffrey Magee, Dax Hoffman, Costa Colbert, et al. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons[J]. Annu Rev Physiol, 1998, 60: 327-346.【158】 Pierre J Magistretti. Neuron-glia metabolic coupling and plasticity[J]. J Exp Biol, 2006, 209(Pt 12): 2304-2311.【159】 Paul A Rutecki. Neuronal excitability: voltage-dependent currents and synaptic transmission[J]. J Clin Neurophysiol, 1992, 9(2): 195-211.【160】 Sheridan L Swope, Stephen J Moss, Craig D Blackstone, et al. Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity[J]. FASEB J, 1992, 6(8): 2514-23.【161】 Tanaka E, Yamamoto S, Yoshihisa Kudo, et al. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro[J]. J Neurophysiol, 1997, 78(2): 891-902.【162】 Siesjo B K, Anders Ekholm, Ken-ichiro Katsura, et al. Acid-base changes during complete brain ischemia[J]. Stroke, 1990, 21(11 Suppl): III194-9.【163】 Simon R, Xiong Z. Acidotoxicity in brain ischemia[J]. Biochem Soc Trans, 2006, 34(Pt6): 1356-1361.【164】 Shono Yuji, Masahiro Kamouchi, Takanari Kitazono, et al. Change in intracellular pH causes the toxic Ca2+ entry via NCX1 in neuron- and glia-derived cells[J]. Cell Mol Neurobiol, 2010, 30(3): 453-60.【165】 Zhou Chun-yi, Xiao Cheng, Deng Chun-yu, et al. Extracellular proton modulates GABAergic synaptic transmission in rat hippocampal CA3 neurons[J]. Brain Res, 2007, 1145: 213-220.【166】 Dwight E Bergles, Craig E Jahr. Synaptic activation of glutamate transporters in hippocampal astrocytes[J]. Neuron, 1997, 19: 1297-1308.【167】 Giorgio A Ascoli, Lidia Alonso-Nanclares, Stewart A Anderson, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex[J]. Nat Rev Neurosci, 2008, 9(7): 557-68.【168】 Thomas Klausberger, Peter Somogyi. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations[J]. Science, 2008, 321(5885): 53-57.【169】 Changhan Ouyang, Guo Lian-jun, Lu Qing, et al., Enhanced activity of GABA receptors inhibits glutamate release induced by focal cerebral ischemia in rat striatum[J]. Neurosci Lett, 2007, 420(2): 174-178.【170】 Cinzia Costa, Giorgia Leone, Emilia Saulle, et al., Coactivation of GABA(A) and GABA(B) receptor results in neuroprotection during in vitro ischemia[J]. Stroke, 2004, 35(2): 596-600.【171】 Johansen F F, N H Diemer, Enhancement of GABA neurotransmission after cerebral ischemia in the rat reduces loss of hippocampal CA1 pyramidal cells[J]. Acta Neurol Scand, 1991, 84(1): 1-6.【172】 Obrenovitch T P. Molecular physiology of preconditioning-induced brain tolerance to ischemia[J]. Physiol Rev, 2008, 88(1): 211-247. |
[1] | ZHANG Qun-feng,HE Huan-ying,LIAO Yun-hao,WANG Guo-qing. The Effects of Maternal Chlorpyrifos Exposure on the Expression of COX2,CREB and BDNF in Hippocampus of Offspring Mice [J]. Acta Neuropharmacologica, 2019, 9(6): 1-5. |
[2] | YANG Jing,YUAN Wen-ying. Toxoplasma Infection on Nerve Tissue Damage and Its Mechanism through the Blood-Brain Barrier [J]. Acta Neuropharmacologica, 2019, 9(5): 40-43. |
[3] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[4] | MIAO Ming-san,PENG Meng-fan,FANG Xiao-yan,JIA Jiao-jiao,BAI Ming. Effects of Sargentodoxacuneata Total Phenolic Acids on Oxidative Stress Level and Energy Metabolism of Brain Tissues in Rats with Cerebral Ischemia Reperfusion Injury [J]. Acta Neuropharmacologica, 2019, 9(1): 1-5. |
[5] | SUN Cheng-cheng,LIU Jian-gang,LIU Mei-xia,LI Hao,LUO Zeng-gang. Exploration of Pathological Mechanism of Vascular Dementia Induced by Chronic Cerebral Hypoperfusion and Production of Several Common Animal Models [J]. Acta Neuropharmacologica, 2019, 9(1): 13-17. |
[6] | WEI Zhen-zhen,FANG Xiao-yan,BAI Ming,MIAO Ming-san. Research Progress in Treatment of Cerebral Ischemia Injury Based on Astrocytes [J]. Acta Neuropharmacologica, 2019, 9(1): 36-43. |
[7] | WANG Wei-sheng,JU Yun-yue,WANG Yu-jun,LIU Jing-gen. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC [J]. Acta Neuropharmacologica, 2018, 8(5): 65-66. |
[8] | HU Wei-wei, CHEN Zhong. Dissection of the Role of Cell Type Specific Histamine Receptors in Central Nervous System Disorders [J]. Acta Neuropharmacologica, 2018, 8(5): 88-89. |
[9] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[10] | ZHU Yu-yang,WANG Lu-bin,CHEN pin-hong,YE en-mao,YANG Zheng1. Imbalanced Functional Link between Large-Scale Brain Networks in Heroin Addiction [J]. Acta Neuropharmacologica, 2018, 8(4): 9-10. |
[11] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms [J]. Acta Neuropharmacologica, 2018, 8(4): 23-25. |
[12] | Gill SE1,5#,Halene T1,6#,Rajarajan P2,Chandrasekaran S2,Kassim B1,Fullard JF1,5,Loh YHE8,Bannon MJ7,. 3D Genome Mapping in Dopaminergic Neurons from Adult Human Midbrain [J]. Acta Neuropharmacologica, 2018, 8(4): 31-32. |
[13] | WANG Jia-Yue,DUAN Yan-Hong,Wang Xin-He,Zhang Xu-Liang,Xu Mei-Chen, Cao Xiao-Hua *. The Effect of PHA-543613 on Memory Disorders in Presenilin1 and Presenilin2 Conditional Double Knockout Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 52-53. |
[14] | WANG Xiao-na, ZHANG Xin-yu, SUN Yan-yun, JIN Xin-chun. D1 Receptor-Mediated Endogenous tPA Upregulation Contributes to Acute Blood Brain Barrier Damage [J]. Acta Neuropharmacologica, 2018, 8(4): 58-59. |
[15] | ZHANG Hai-wei1, ZHANG Dan-shen2, SU Xiao-mei2, ZHAO Kai-yan2, WU Chun-yang1, ZHANG Li1. Study on the Establishment of an in vitro Blood-Cerebrospinal Fluid Barrier Model [J]. Acta Neuropharmacologica, 2018, 8(3): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||