Acta Neuropharmacologica ›› 2015, Vol. 5 ›› Issue (4): 33-42.
Previous Articles Next Articles
LIU Ya-ni, ZHANG Hui-ran, ZHAO Chen, HUANG Dong-yang, DU Yu-wei, ZHANG Hai-lin
Online:
2015-08-26
Published:
2016-03-03
Contact:
张海林,男,博士,教授,博士生导师;研究方向:分子药理学;Tel: +86-0311-86265562, E-mail: zhanghl@hebmu.edu.cn
About author:
刘雅妮,女,博士,助理研究员;研究方向:神经生物学;Tel:+86-010-55498798, E-mail: liu-yani@live.cn
Supported by:
国家自然科学基金资助项目(No. 31270882),国家重点基础研究发展计划(973计划)(2013CB531302)
LIU Ya-ni, ZHANG Hui-ran, ZHAO Chen, HUANG Dong-yang, DU Yu-wei, ZHANG Hai-lin. The Progress on Studies of Chloride Channels[J]. Acta Neuropharmacologica, 2015, 5(4): 33-42.
[1] Miledi R. A calcium-dependent transient outward current in Xenopus laevis oocytes[J]. Proc R Soc Lond B Biol Sci, 1982, 215(1201):491-497.[2] Criss Hartzell, IIva Putzier, Jorge Arreola. Calcium-activated chloride channels[J]. Annu Rev Physiol, 2005, 67(1):719-758.[3] James E Melvin, David Yule, Trevor Shuttleworth, et al. Regulation of fluid and electrolyte secretion in salivary gland acinar cells[J]. Annu Rev Physiol, 2005, 67:445-469.[4] Jim Berg, Huang he Yang, Jan Lily Yeh. Ca2+-activated Cl- channels at a glance[J]. J Cell Sci, 2012, 125(Pt 6):1367-1371.[5] Kleene S J, Gesteland R C. Calcium-activated chloride conductance in frog olfactory cilia[J]. J Neurosci, 1991, 11(11):3624-3629.[6] Graeme Lowe, Gold G H. Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander[J]. J Physiol, 1993, 462(1):175-196.[7] Stuart Firestein, Shepherd G M. Interaction of anionic and cationic currents leads to a voltage dependence in the odor response of olfactory receptor neurons[J]. J Neurophysiol, 1995, 73(2):562-567.[8] Detlev Schild, Diego Restrepo. Transduction mechanisms in vertebrate olfactory receptor cells[J]. Physiol Rev, 1998, 78(2):429-466.[9] Stapleton S R, Scott R H, Bell B A. Effects of metabolic blockers on Ca(2+)-dependent currents in cultured sensory neurones from neonatal rats[J]. Br J Pharmacol, 1994, 111(1):57-64.[10] Kevin P M Currie, John Francis Wootton, Roderick H Scott. Activation of Ca(2+)-dependent Cl- currents in cultured rat sensory neurones by flash photolysis of DM-nitrophen[J]. J Physiol, 1995, 482 ( Pt 2):291-307.[11] William Large, Wang Q. Characteristics and physiological role of the Ca(2+)-activated Cl- conductance in smooth muscle[J]. Am J Physiol, 1996, 271(2 Pt 1):C435-454.[12] Bao Rong-feng, Lawrence M Lifshitz, Richard A Tuft, et al. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle[J]. J Gen Physiol, 2008, 132(1):145-160.[13] Sonia A Cunningham, Mouhaned S Awayda, James K Bubien, et al. Cloning of an epithelial chloride channel from bovine trachea[J]. J Biol Chem, 1995, 270(52):31016-31026.[14] Adele Gibson, Alan P Lewis, Karen Affleck, et al. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels[J]. J Biol Chem, 2005, 280(29):27205-27212.[15] Anand C Patel, Tom J Brett, Michael J Holtzman. The role of CLCA proteins in inflammatory airway disease[J]. Annu Rev Physiol, 2009, 71:425-449.[16] Huang Ping, Liu Jie, Di Anke, et al. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase[J]. J Biol Chem, 2001, 276(23):20093-20100.[17] Robinson N C, Huang P, Kaetzel M A, et al. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current[J]. J Physiol, 2004, 556(Pt 2):353-368.[18] Jorge Arreola, Ted Begenisich, Keith Nehrke, et al. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl- channel gene[J]. J Physiol, 2002, 545(Pt 1):207-216.[19] Qu Zhi-qiang, Raymond W Wei, Wesley Mann, et al. Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(-) currents[J]. J Biol Chem, 2003, 278(49):49563-49572.[20] Sun Hui, Takashi Tsunenari, King-Wai Yau, et al. The vitelliform macular dystrophy protein defines a new family of chloride channels[J]. Proc Natl Acad Sci USA, 2002, 99(6):4008-4013.[21] Loretta Ferrera, Antonella Caputo, Luis J V Galietta. TMEM16A protein: a new identity for Ca(2+)-dependent Cl channels[J]. Physiology (Bethesda), 2010, 25(6):357-363.[22] Rene Barro-Soria, Rainer Schreiber, Karl Kunzelmann. Bestrophin 1 and 2 are components of the Ca(2+) activated Cl(-) conductance in mouse airways[J]. Biochim Biophys Acta, 2008, 1783(10):1993-2000.[23] Yu Kuai, Cui Yuan-yuan, Criss Hartzell. The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function[J]. Invest Ophthalmol Vis Sci, 2006, 47(11):4956-4961.[24] Alan D Marmorstein, Lihua Y Marmorstein, Mary Rayborn, et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium[J]. Proc Natl Acad Sci USA, 2000, 97(23):12758-12763.[25] Karl Kunzelmann. TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume[J]. Trends Biochem Sci, 2015, 40(9):535-543.[26] Veronica Kane Dickson, Leanne Pedi, Stephen B Long. Structure and insights into the function of a Ca2+-activated Cl- channel[J]. Nature, 2014, 516(7530):213-218.[27] Young Duk Yang, Hawon Cho, Jae Yeon Koo, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008, 455(7217):1210-1215.[28] Bjorn Christian Schroeder, Cheng Tong, Yuh Nung Jan, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008, 134(6):1019-1029.[29] Antonella Caputo, Emanuela Caci, Loretta Ferrera, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity[J]. Science, 2008, 322(5901):590-594.[30] Mattia Malvezzi, Madhavan Chalat, Radmila Janjusevic, et al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel[J]. Nat Commun, 2013, 4:2367.[31] Nicoletta Pedemonte, Luis J Galietta. Structure and function of TMEM16 proteins (anoctamins) [J]. Physiol Rev, 2014, 94(2):419-459.[32] Simone Pifferi, Michele Dibattista, Anna Menini. TMEM16B induces chloride currents activated by calcium in mammalian cells[J]. Pflugers Arch, 2009, 458(6):1023-1038.[33] Claudia Sagheddu, Anna Boccaccio, Michele Dibattista, et al. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells[J]. J Physiol, 2010, 588(Pt 21):4189-4204.[34] John T Sheridan, Erin N Worthington, Yu Kuai, et al. Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A[J]. J Biol Chem, 2010, 286(2):1381-1388.[35] Ghada Fallah, Thomas Romer, Silvia Detro-Dassen, et al. TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels[J]. Mol Cell Proteomics, 2010, 10(2):M110 004697.[36] Janine D Brunner, Novandy K Lim, Stephan Schenck, et al. X-ray structure of a calcium-activated TMEM16 lipid scramblase[J]. Nature, 2014, 516(7530):207-212.[37] Xiao Qing-huan, Cui Yuan-yuan. Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of anoctamin1/TMEM16A[J]. PLoS One, 2014, 9(6):e99376.[38] Jason Tien, Christian J Peters, Wong Xiu-ming, et al. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity[J]. Elife, 2014, 3(2):e02772.[39] Jin X, Shah S, Du X, et al. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals[J]. J Physiol, 2016, 594(1):19-30.[40] Ricardo De La Fuente, Wan Namkung, Aaron Mills, et al. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel[J]. Mol Pharmacol, 2008, 73(3):758-768.[41] Wan Namkung, Pauy-Wah Phuan, A S Verkman. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells[J]. J Biol Chem, 2010, 286(3):2365-2374.[42] Wan Namkung, Jay R Thiagarajah, Puay-Wah Phuan, et al. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea[J]. FASEB J, 2010, 24(11):4178-4186.[43] Zhang Xuan, Du Xiao-na, Zhang Guo-hong, et al. Agonist-dependent potentiation of vanilloid receptor transient receptor potential vanilloid type 1 function by stilbene derivatives[J]. Mol Pharmacol, 2012, 81(5):689-700.[44] Soo-Jin Oh, Seok Jin Hwang, Jonghoon Jung, et al. MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1[J]. Mol Pharmacol, 2013, 84(5):726-735.[45] Liu Yani, Huiran Zhang, Huang Dong-yang, et al. Characterization of the effects of Cl channel modulators on TMEM16A and bestrophin-1 Ca activated Cl channels[J]. Pflugers Arch, 2015, 467(7):1417-1430.[46] Puma Kashyap, Pedro Julian Gomez-Pinilla, Maria J Pozo, et al. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation[J]. Neurogastroenterol Motil, 2011, 23(8):760-765.[47] Cuthbert A W. New horizons in the treatment of cystic fibrosis[J]. Br J Pharmacol, 2011, 163(1):173-183.[48] Robert B West, Christopher L Corless, Chen Xin, et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status[J]. Am J Pathol, 2004, 165(1):107-113.[49] Ayoub C, Christine Wasylyk, Li Y, et al. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines[J]. Br J Cancer, 2010, 103(5):715-726.[50] Else Kay Hoffmann, Ian Henry Lambert, Stine F Pedersen. Physiology of cell volume regulation in vertebrates[J]. Physiol Rev, 2009, 89(1):193-277.[51] Andres Stutzin, Else Kay Hoffmann. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis[J]. Acta Physiol (Oxf), 2006, 187(1-2):27-42.[52] Florian Lang, Gillian L Busch, Markus Ritter, et al. Functional significance of cell volume regulatory mechanisms[J]. Physiol Rev, 1998, 78(1):247-306.[53] Jean-Marc Dubois, Beatric Rouzaire-Dubois. The influence of cell volume changes on tumour cell proliferation[J]. Eur Biophys J, 2004, 33(3):227-232.[54] Else Kay Hoffmann, Niels Bjerre Holm, Ian Henry Lambert. Functions of volume-sensitive and calcium-activated chloride channels[J]. IUBMB Life, 2014, 66(4):257-267.[55] Jiang Bao-hong, Naoki Hattori, Liu Bing, et al. Suppression of cell proliferation with induction of p21 by Cl(-) channel blockers in human leukemic cells[J]. Eur J Pharmacol, 2004, 488(1-3):27-34.[56] Chen L X, Zhu L Y, Jacob T J, et al. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells[J]. Cell Prolif, 2007, 40(2):253-267.[57] Li M, Wang B, Lin W. Cl-channel blockers inhibit cell proliferation and arrest the cell cycle of human ovarian cancer cells[J]. Eur J Gynaecol Oncol, 2008, 29(3):267-271.[58] Poulsen K A, Andersen E C, Hansen C F, et al. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels[J]. Am J Physiol Cell Physiol, 2010, 298(1):C14-25.[59] Florian Lang, Else Kay Hoffmann. Role of ion transport in control of apoptotic cell death[J]. Compr Physiol, 2012, 2(3):2037-2061.[60] Jacob Bak Holm, Ryszard Grygorczyk, Ian Henry Lambert. Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase[J]. Am J Physiol Cell Physiol, 2013, 305(1):C48-60.[61] Nilius B, Droogmans G. Amazing chloride channels: an overview[J]. Acta Physiol Scand, 2003, 177(2):119-147.[62] Miguel A Valverde, Mario Diaz, Francisco V Sepulveda, et al. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein[J]. Nature, 1992, 355(6363):830-833.[63] Markus Paulmichl, Li Yi, Kevin Wickman, et al. New mammalian chloride channel identified by expression cloning[J]. Nature, 1992, 356(6366):238-241.[64] Ahmed N, Ramjeesingh M, Wong S, et al. Chloride channel activity of ClC-2 is modified by the actin cytoskeleton[J]. Biochem J, 2000, 352(Pt 3):789-794.[65] Zhou Jia-Guo, Ren Jing-Li, Qiu Qin-Ying, et al. Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells[J]. J Biol Chem, 2005, 280(8):7301-7308.[66] Johannes Furst, Claudia Bazzini, Martin Jakab, et al. Functional reconstitution of ICln in lipid bilayers[J]. Pflugers Arch, 2000, 440(1):100-115.[67] Duan Da-yue, Cathy Winter, Suzanne Cowley, et al. Molecular identification of a volume-regulated chloride channel[J]. Nature, 1997, 390(6658):417-421.[68] Karsten H Weylandt, MA Valverde, Muriel Nobles, et al. Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation[J]. J Biol Chem, 2001, 276(20):17461-17467.[69] Rodolphe Fischmeister, H Criss Hartzell. Volume sensitivity of the bestrophin family of chloride channels[J]. J Physiol, 2005, 562(Pt 2):477-491.[70] Joana Almaca, Tian Yue-min, Fadi Aldehni, et al. TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A[J]. J Biol Chem, 2009, 284(42):28571-28578.[71] Andrea Milenkovic, Caroline Brandl, Vladimir M Milenkovic, et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells[J]. Proc Natl Acad Sci USA, 2015, 112(20):E2630-2639.[72] Felizia K Voss, Florian Ullrich, Jonas Munch, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC[J]. Science, 2014, 344(6184):634-638.[73] Qiu Zhao-zhu, Adrienne E Dubin, Jayanti Mathur, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel[J]. Cell, 2014, 157(2):447-458.[74] Thomas Kjaer Klausen, Charlotte Hougaard, Else Kay Hoffmann, et al. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin[J]. Am J Physiol Cell Physiol, 2006, 291(4):C757-771.[75] Shintaro Yamamoto, Kunihiko Ichishima, Tsuguhisa Ehara. Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells[J]. Biomed Res, 2008, 29(6):307-315.[76] Takahiro Shimizu, Tomohiro Numata, Yasunobu Okada. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel[J]. Proc Natl Acad Sci USA, 2004, 101(17):6770-6773.[77] Takahiro Shimizu, Elbert Lan Lee, Tomoko Ise, et al. Volume-sensitive Cl(-) channel as a regulator of acquired cisplatin resistance[J]. Anticancer Res, 2008, 28(1A):75-83.[78] Elbert L Lee, Takahiro Shimizu, Tomoko Ise, et al. Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells[J]. J Cell Physiol, 2007, 211(2):513-521.[79] Hana Inoue, Yasunobu Okada. Roles of volume-sensitive chloride channel in excitotoxic neuronal injury[J]. J Neurosci, 2007, 27(6):1445-1455.[80] Liu Hong-tao, Tenpei Akita, Takahiro Shimizu, et al. Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels[J]. J Physiol, 2009, 587(Pt 10):2197-2209.[81] Harold K Kimelberg. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy[J]. Glia, 2005, 50(4):389-397.[82] Clive M Baumgarten, Henry F Clemo. Swelling-activated chloride channels in cardiac physiology and pathophysiology[J]. Prog Biophys Mol Biol, 2003, 82(1-3):25-42.[83] Wang X, Takahashi N, Uramoto H, et al. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes[J]. Cell Physiol Biochem, 2005, 16(4-6):147-154.[84] Thomas J Jentsch, Klaus Steinmeyer, Gisela Schwarz. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes[J]. Nature, 1990, 348(6301):510-514.[85] Raimund Dutzler, Ernest B Campbell, Martine Cadene, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity[J]. Nature, 2002, 415(6869):287-294.[86] Manuela Koch, Klaus Steinmeyer, C Lorenz, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia[J]. Science, 1992, 257(5071):797-800.[87] Rauacute Estevez, Thomas Boettger, Valentin Stein, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion[J]. Nature, 2001, 414(6863):558-561.[88] Gabriel Stolting, Martin Fischer, Christoph Fahlke. CLC channel function and dysfunction in health and disease[J]. Front Physiol, 2014, 5:378.[89] Riordan J R, Rommens J M, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA[J]. Science, 1989, 245(4922):1066-1073.[90] Melanie Childers, George Eckel, Alan Himmel, et al. A new model of cystic fibrosis pathology: lack of transport of glutathione and its thiocyanate conjugates[J]. Med Hypotheses, 2007, 68(1):101-112.[91] Jentsch T J, Gunther W. Chloride channels: an emerging molecular picture[J]. Bioessays, 1997, 19(2):117-126.[92] Erik M Schwiebert, D J Benos, Marie E Egan, et al. CFTR is a conductance regulator as well as a chloride channel[J]. Physiol Rev, 1999, 79(1 Suppl):S145-166.[93] 王丽娜, 王晨光, 王赫, 等. 离子通道药理学[M]. 北京:人民卫生出版社, 2005.[94] Bormann J, Hamill O P, Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones[J]. J Physiol, 1987, 385:243-286.[95] Thomas J Jentsch. Chloride channels: a molecular perspective[J]. Curr Opin Neurobiol, 1996, 6(3):303-310.[96] 关兵才, 张海林, 李之望, 等, 细胞电生理学基本原理与膜片钳技术[M].北京:科学出版社, 2013. |
[1] | GENG Xiao1, SHI Hao1, YE Fan1, DU Han2, QIAN Lin-nan1, GU Le-ying1, WU Guan-yi1, ZHU Chan1, YANG Yan1, WANG Chang-ming1, ZHOU Yuan1, YU Guang 1, LIU Qin3, DONG Xin-zhong4,5, YU Lei1, TANG Zong-xiang1,. Matrine Inhibits Itching by Lowering the Activity of Calcium Channel [J]. Acta Neuropharmacologica, 2018, 8(5): 95-96. |
[2] | BIAN Fang1,HOU Yan-ning2. Research Progress of the ATP Sensitive Potassium Channels in Neurodegenerative Diseases [J]. Acta Neuropharmacologica, 2017, 7(5): 52-58. |
[3] | GAO Yuan-yuan,GUO Chun-yan. The Progress of Transient Receptor Potential Channels in Metabolic Syndrome [J]. Acta Neuropharmacologica, 2016, 6(3): 38-43. |
[4] | JIAO Xiao-cui, ZHANG Hai-lin. Molecular Basis and Mechanism of Swelling-Activated Chloride Current in Satellite Glia Cells of Rat Dorsal Root Ganglion [J]. Acta Neuropharmacologica, 2016, 6(2): 1-6. |
[5] | LI Li,ZHANG Hai-lin. The Multi-target Mechanism of CCL2/CCR2 Involved in Neuropathic Pain [J]. Acta Neuropharmacologica, 2016, 6(1): 49-57. |
[6] | WANG Chuan,SHAN Bin,WANG Qiong,ZHANG Hai-lin. Progress of Voltage Gated Sodium Channel Nav1.7 and its Specific Blockers in Nneuropathic pain [J]. Acta Neuropharmacologica, 2015, 5(5): 49-56. |
[7] | LI Ying-jie,YANG Bao-xue. Anesthetic Mechanism, Its Protective Effect and Ion Channels [J]. Acta Neuropharmacologica, 2013, 3(4): 39-46. |
[8] | GUO Yan-yan, QI Feng-yan, ZHAO Ming-gao. Involvement of Large-conductance Ca2+-activated K+ Channels in the Synaptic Transmission in the Lateral Amygdala [J]. Acta Neuropharmacologica, 2012, 2(1): 10-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||