Acta Neuropharmacologica ›› 2013, Vol. 3 ›› Issue (5): 50-57.
Previous Articles Next Articles
ZHANG Nan, ZHANG Xiang-jian
Online:
2013-10-26
Published:
2014-06-27
Contact:
张祥建,男,教授,博士,博士生导师;研究方向:神经病学;E-mail:zhang6xj@aliyun.com
About author:
张楠,男,硕士生;研究方向:神经药理学;E-mail:jlx88cn@163.com
Supported by:
国家自然科学基金项目(No.81371287)
ZHANG Nan, ZHANG Xiang-jian. The Relationship Between reactive oxygen species (ROS) and activation of neutrophilic alkaline phosphatase 3 (NALP3) Inflammasome[J]. Acta Neuropharmacologica, 2013, 3(5): 50-57.
[1] Qiao Hui-min, Zhang Xiang-jian, Zhu Chun-hua, et al. Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia[J]. Brain Res, 2012, 1448: 71-81.[2] Maria L Salskov-Iversen, Claus Johansen, Knud Kragballe, et al. Caspase-5 expression is upregulated in lesional psoriatic skin[J]. J Invest Dermatol, 2011, 131(3): 670-676.[3] Zhou Rong-bin, Aubry Tardivel, Bernard Thorens, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol, 2010, 11(2): 136-140.[4] Sanjeev Mariathasan, Kim Newton, Denise M Monack, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf[J]. Nature, 2004, 430(6996): 213-218.[5] Zhang Chun, Krishna M Boini, Xia Min, et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia[J]. Hypertension, 2012, 60(1): 154-162.[6] Fabio Martinon. Signaling by ROS drives inflammasome activation[J]. Eur J Immunol, 2010, 40(3): 616-619.[7] Fabio Martinon, Virginie Pétrilli, Annick Mayor, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome[J]. Nature, 2006, 440(7081): 237-241.[8] Christine Schorn, Benjamin Frey, Kirsten Lauber, et al. Sodium overload and water influx activate the NALP3 inflammasome[J]. J Biol Chem, 2011, 286(1): 35-41.[9] Sutterwala F S, Ogura Y, Zamboni D S, et al. NALP3: a key player in caspase-1 activation[J]. J Endotoxin Res, 2006, 12(4): 251-256.[10] H James Stunden, Eicke Latz. PKR stirs up inflammasomes[J]. Cell Res, 2013, 23(2): 168-170.[11] Wen Chao-yang, Yang Xiao-li, Yan Zhi-feng, et al. Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification[J]. Int J Cardiol, 2013, 168(3): 2242-2247.[12] Robert Blomgran, Veronika P Brodin, Deepti Verma, et al. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils[J]. PLoS One, 2012, 7(3): e31326.[13] Solomon S Shaftel, Thaddeus J Carlson, John A Olschowka, et al. Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood–brain barrier permeability without overt neurodegeneration[J]. J Neurosci, 2007, 27(35): 9301-9309.[14] Sushmita Jha, Siddharth Y Srivastava, W June Brickey, et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18[J]. J Neurosci, 2010, 30(47): 15811-15820.[15] Zhang Nan, Zhang Xiang-jian, Liu Xiao-xia, et al. Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice[J]. Mediators of Inflammation, 2014, 2014: 370530.[16] Petrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration[J]. Cell Death Differ, 2007, 14(9): 1583-1589.[17] Miao Zhi-min, Zhao Shi-hua, Yan Sheng-li, et al. NALP3 inflammasome functional polymorphisms and gout susceptibility[J]. Cell Cycle, 2009, 8(1): 27-30.[18] Ferrero‐Miliani L, Nielsen O H, Andersen P S, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin‐1β generation[J]. Clin Exp Immunol, 2007, 147(2): 227-235.[19] Fabio Martinon. Detection of immune danger signals by NALP3[J]. J Leukoc Biol, 2008, 83(3): 507-511.[20] Huang Jun, Li Ya-ning, Tang Yao-hui, et al. CXCR4 antagonist AMD3100 protects blood–brain barrier integrity and reduces inflammatory response after focal ischemia in mice[J]. Stroke, 2013, 44(1): 190-197.[21] Wulf Dröge. Free radicals in the physiological control of cell function[J]. Physiolo Rev, 2002, 82(1): 47-95.[22] Marian Valko, Dieter Leibfritz, Jan Moncol, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol, 2007, 39(1): 44-84.[23] Ma Wei, Gerald A Berkowitz. The grateful dead: calcium and cell death in plant innate immunity[J]. Cellular Microbiol, 2007, 9(11): 2571-2585.[24] Christian Bogdan, Martin Röllinghoff, Andreas Diefenbach. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity[J]. Curr Opin Immunol, 2000, 12(1): 64-76.[25] Philipp Niethammer, Clemens Grabher, A Thomas Look, et al. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J]. Nature, 2009, 459(7249): 996-999.[26] Eric Ogier-Denis, Sanae Ben Mkaddem, Alain Vandewalle. NOX enzymes and Toll-like receptor signaling[C] Seminars Immunopathol, 2008, 30(3): 291-300.[27] Marcello Iriti, Franco Faoro. Review of innate and specific immunity in plants and animals[J]. Mycopathologia, 2007, 164(2): 57-64.[28] Fabio Martinon, Annick Mayor, Jurg Tschopp. The inflammasomes: guardians of the body[J]. Annual Rev Immunol, 2009, 27: 229-265.[29] Clare Bryant, Katherine A Fitzgerald. Molecular mechanisms involved in inflammasome activation[J]. Trends Cell Biol, 2009, 19(9): 455-464.[30] H James Stunden, Eicke Latz. PKR stirs up inflammasomes[J]. Cell Res, 2013, 23(2): 168-170.[31] Robert Blomgran, Veronika Patcha Brodin, Deepti Verma, et al. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils[J]. PLoS One, 2012, 7(3): e31326.[32] Stephen Chivasa, William J Simon, Alex M Murphy, et al. The effects of extracellular adenosine 5′‐triphosphate on the tobacco proteome[J]. Proteomics, 2010, 10(2): 235-244.[33] Eleftheriadis T, Pissas G, Karioti A, et al. Uric acid induces caspase-1 activation, IL-1β secretion and P2X7 receptor dependent proliferation in primary human lymphocytes[J]. Hippokratia, 2013, 17(2): 141-145.[34] Cristiane M Cruz, Alessandra Rinna, Henry Jay Forman, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages[J]. J Biological Chem, 2007, 282(5): 2871-2879.[35] James Hewinson, Samantha F Moore, Christian Glover, et al. A key role for redox signaling in rapid P2X7 receptor-induced IL-1β processing in human monocytes[J]. J Immunol, 2008, 180(12): 8410-8420.[36] Stephanie C Eisenbarth, Oscar R Colegio, William O’Connor, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants[J]. Nature, 2008, 453(7198): 1122-1126.[37] Catherine Dostert, Virginie Pétrilli, Robin Van Bruggen, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica[J]. Science, 2008, 320(5876): 674-677.[38] Yuri Y Sautin, Takahiko Nakagawa, Sergey Zharikov, et al. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress[J]. Am J Physiol Cell Physiol, 2007, 293(2): C584-C596.[39] Song Yuan, Ding Ning, Kanazawa Tamotsu, et al. Cucurbitacin D is a new inflammasome activator in macrophages[J]. Int Immunopharmacol, 2013, 17(4): 1044-1050.[40] Suzanne L Cassel, Stephanie C Eisenbarth, Shankar S Iyer, et al. The Nalp3 inflammasome is essential for the development of silicosis[J]. Proc Natl Acad Sci USA, 2008, 105(26): 9035-9040.[41] Bice Fubini, Andrea Hubbard. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis[J]. Free Radical Biol Med, 2003, 34(12): 1507-1516.[42] Simeonova P P, Luster M I. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-alpha response from alveolar macrophages[J]. Am J Respir Cell Mol Biol, 1995, 12(6): 676-683.[43] Laurence Feldmeyer, Martin Keller, Gisela Niklaus, et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes[J]. Curr Biol, 2007, 17(13): 1140-1145.[44] Jin Guang-hui, Liu Yang, Jin Shun-zi, et al. UVB induced oxidative stress in human keratinocytes and protective effect of antioxidant agents[J]. Radiat Environ Biophys, 2007, 46(1): 61-68.[45] Maritza Jaramillo, Marianne Godbout, Martin Olivier. Hemozoin induces macrophage chemokine expression through oxidative stress-dependent and-independent mechanisms[J]. J Immunol, 2005, 174(1): 475-484.[46] Olaf Gross, Hendrik Poeck, Michael Bscheider, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence[J]. Nature, 2009, 459(7245): 433-436.[47] Irving C Allen, Margaret A Scull, Chris B Moore, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA[J]. Immunity, 2009, 30(4): 556-565.[48] Petrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration[J]. Cell Death Differ, 2007, 14(9): 1583-1589.[49] G Paul Bolwell. Role of active oxygen species and NO in plant defence responses[J]. Curr Opin Plant Biol, 1999, 2(4): 287-294.[50] Alex J Fay, Qian Xiang, Yuh Nung Jan, et al. SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes[J]. Proc Natl Acad Sci, 2006, 103(46): 17548-17553.[51] Luke A O'Neill. How frustrateon leads to inflammation[J]. Science, 2008, 320(5876): 619-620.[52] Bergstrand H. The generation of reactive oxygen-derived species by phagocytes[J]. Agents Actions. Suppl, 1989, 30: 199-211.[53] Hoffstein S, Weissmann G. Mechanisms of lysosomal enzyme release from leukocytes[J]. Arthritis Rheum, 1975, 18(2): 153-165.[54] Veit Hornung, Franz Bauernfeind, Annett Halle, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization[J]. Nature Immunol, 2008, 9(8): 847-856.[55] Veit Hornung, Eicke Latz. Critical functions of priming and lysosomal damage for NLRP3 activation[J]. Eur J Immunol, 2010, 40(3): 620-623.[56] James A Windelborn, Peter Lipton. Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA‐mediated calcium influx, arachidonic acid metabolism, and free radical production[J]. J Neurochem, 2008, 106(1): 56-69.[57] Li Zheng-zheng, Michael Berk, Thomas M McIntyre, et al. The lysosomal‐mitochondrial axis in free fatty acid–induced hepatic lipotoxicity[J]. Hepatology, 2008, 47(5): 1495-1503.[58] Karen Bedard, Karl-Heinz Krause. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev, 2007, 87(1): 245-313.[59] Atsuo Sekiyama, Haruysau Ueda, Shin-ichiro Kashiwamura, et al. A stress-induced, superoxide-mediated caspase-1 activation pathway causes plasma IL-18 upregulation[J]. Immunity, 2005, 22(6): 669-677.[60] Elisabetta Aldieri, Chiara Riganti, Manuela Polimeni, et al. Classical inhibitors of NOX NAD (P) H oxidases are not specific[J]. Curr Drug Metab, 2008, 9(8): 686-696.[61] Samantha F Moore, Amanda B MacKenzie. NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages[J]. J Immunol, 2009, 183(5): 3302-3308.[62] Catherine Dostert, Greta Guarda, Jackeline F Romero, et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal[J]. PLoS One, 2009, 4(8): e6510.[63] Bikash Ranjan Sahoo, Jitendra Maharana, Gopal K Bhoi, et al. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis[J]. Mol BioSyst, 2014, 10(5): 1104-1116.[64] Fabio Martinon. Detection of immune danger signals by NALP3[J]. J Leukoc Biol, 2008, 83(3): 507-511.[65] David S Schneider. Plant immunity and film noir: what gumshoe detectives can teach us about plant-pathogen interactions[J]. Cell, 2002, 109(5): 537-540.[66] Pablo Pelegrin, Annmarie Surprenant. Dynamics of macrophage polarization reveal new mechanism to inhibit IL‐1β release through pyrophosphates[J]. EMBO J, 2009, 28(14): 2114-2127.[67] Felix Meissner, Kaaweh Molawi, Arturo Zychlinsky. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock[J]. Nat Immunol, 2008, 9(8): 866-872.[68] Alana A Shigeoka, James L Mueller, Amanpreet Kambo, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury[J]. J Immunol, 2010, 185(10): 6277-6285.[69] Ruslan Medzhitov. Origin and physiological roles of inflammation[J]. Nature, 2008, 454(7203): 428-435.[70] Ma Qing-yi, Chen Sheng, Hu Qin, et al. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage[J]. Annals Neurol, 2014, 75(2): 209-219. |
[1] | LIN Si-mei, ZHOU Hong, YANG Bao-xue. The Relationship between Hyperuricemia and Chronic Kidney Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 55-64. |
[2] | ZHONG Jia-hong, WANG Hai-tao, XU Jiang-ping. Inhibition of Phosphodiesterase 4 by FCPR16 Protects SH-SY5Y Cells against MPP+-Induced Cell Death through Activating cAMP/PKA/CREB and Epac/Akt Signaling Pathways [J]. Acta Neuropharmacologica, 2018, 8(4): 54-55. |
[3] | BAI Ru-bing,ZHANG Zhong-quan,CEN Juan. The Expression of P-Glycoprotein in Neurons and the Effect of Oxidative Stress on P-Glycoprotein [J]. Acta Neuropharmacologica, 2018, 8(3): 9-. |
[4] | YANG Jie,LIU Fu-jia,TIAN Zi-xia,WANG Le-le,XIE Xin-mei,PANG Xiao-bin. Neuroprotective Effect of Mailuoning on MCAO Rats and Its Antioxidant Mechanism [J]. Acta Neuropharmacologica, 2017, 7(4): 1-7. |
[5] | WANG Sha-sha,ZHANG Zhao,ZHANG Mei-jin,HU Jin-feng,CHEN Nai-hong. Advances of Nrf 2/ARE Signaling Pathway in the Major Depression Disorder [J]. Acta Neuropharmacologica, 2016, 6(3): 32-37. |
[6] | ZHANG Mei-jin,WANG Sha-sha,ZHANG Zhao,CHEN Nai-hong,HU Jin-feng. Role of Nuclear Transcription Factor Nrf2 in Parkinson’s Disease [J]. Acta Neuropharmacologica, 2016, 6(1): 35-40. |
[7] | LOU Yu-xia,ZHANG Zhao,WANG Zhen-zhen,JIANG Yi-na,ZHANG Yi,LI Lin,CHEN Nai-hong. Parkinson Associated DJ-1 Gene and Oxidative Stress [J]. Acta Neuropharmacologica, 2016, 6(1): 58-64. |
[8] | WANG Ying-ying, SONG Xiu-yun, WANG Qi, CHEN Nai-hong. Application of Natural Antioxidants in the Progress of Alzheimer's Disease [J]. Acta Neuropharmacologica, 2015, 5(6): 30-34. |
[9] | YAN Juan,ZHENG Mao-dong. Protective Effects and Mechanisms of L-carnitine in the Nervous System [J]. Acta Neuropharmacologica, 2015, 5(1): 45-50. |
[10] | ZHOU Si-bai, LI Jin-ze, LIU Rui, ZHANG Tian-tai. Recent Development of the Flavonoids on the Treatment of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2015, 5(1): 51-58. |
[11] | ZHAO Wei, LI Fang-jiang, WANG Shu. Protective Effects of Chrysophanol on Liver Injury Induced by Cerebral Ischemia-Reperfusion in Mice [J]. Acta Neuropharmacologica, 2014, 4(4): 1-9. |
[12] | GAO Yan, CHU Shi-feng, CHEN Nai-hong. Glial Cells Protect Neurons against Oxidative Stress in Huntington’s Disease [J]. Acta Neuropharmacologica, 2014, 4(3): 22-30. |
[13] | YAN Juan,ZHENG Mao-Dong. Protective Effects and Mechanisms of Breviscapine on the Nervous System [J]. Acta Neuropharmacologica, 2014, 4(3): 31-38. |
[14] | WANG1 Jie-ting, ZHANG Fang, DING Wen-jun. Neurotoxic Effects of Metal Oxide Nanomaterials [J]. Acta Neuropharmacologica, 2013, 3(3): 39-47. |
[15] | ZHANG Si, WANG Shuo-yu, LI Hua-nan, ZHANG Guo-fu, GU Bing. Oxidative Stress and Antioxidant Therapy after Acute Spinal Cord Injury [J]. Acta Neuropharmacologica, 2012, 2(3): 52-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||