ACTA NEUROPHARMACOLOGICA ›› 2020, Vol. 10 ›› Issue (4): 29-35.DOI: 10.3969/j.issn.2095-1396.2020.04.006
Previous Articles Next Articles
Online:
2020-08-26
Published:
2020-08-26
Contact:
郭春燕,女,教授,博士,研究生导师;研究方向:天然药物活性成分和体内药物分析;E-mail:guochy0311@163.com
About author:
赵江豪,男,2016 级药学本科生
Supported by:
CLC Number:
ZHAO Jiang-hao, CUI Shi-cong, GUO Chun-yan. Bidirectional Adjusting Effects of Mesenchymal Stem Cells on Tumor Diseases[J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 29-35.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2020.04.006
[1] 王萍, 马予洁, 路君, 等. 肿瘤相关间充质干细胞及其靶向治疗的研究进展[J]. 中华细胞与干细胞杂志, 2018, 8(01): 35-38. [2] 徐应龙, 王坚. 间充质干细胞作为载体用于肿瘤治疗[J]. 第二军医大学学报, 2011, 00(09):1030-1034. [3] Pietro Gentile, Simone Garcovich. Concise review: adipose-derived stem cells (ASCs) and adipocyte-secreted exosomal microRNA (A-SE-miR) modulate cancer growth and promote wound repair[J]. J Clin Med, 2019, 8(6): 855. [4] Maria Giovanna Scioli, Gabriele Storti, Federico D'Amico, et al. Adipose-derived stem cells in cancer progression: New perspectives and opportunities[J]. Int J Mol Sci, 2019, 20(13): 3296. [5] Roberta Armignacco, Giulia Cantini, Poli Giada, et al. The adipose stem cell as a novel metabolic actor in adrenocortical carcinoma progression: evidence from an in vitro tumor microenvironment crosstalk model[J]. Cancers (Basel), 2019, 11(12): 1931. [6] Matthew A Lyes, Sturgis Payne, Paul Ferrell, et al. Adipose stem cell crosstalk with chemo-residual breast cancer cells: implications for tumor recurrence[J]. Breast Cancer Res Treat, 2019, 174(2): 413-422. [7] Rafael Schmid, Katharina Wolf, Jan W Robering, et al. ADSCs and adipocytes are the main producers in the autotaxin-lysophosphatidic acid axis of breast cancer and healthy mammary tissue in vitro[J]. BMC Cancer, 2018, 18(1): 1273. [8] Wei-Lan Yeh, Cheng-Fang Tsai, Dar-Ren Chen. Peri-foci adipose-derived stem cells promote chemoresistance in breast cancer[J]. Stem Cell Res Ther, 2017, 8(1): 177. [9] Wang Tao, Yu Xi, Lin Jian, et al. Adipose-derived stem cells inhibited the proliferation of bladder tumor cells by S phase arrest and Wnt/β-catenin pathway[J]. Cell Reprogram, 2019, 21(6): 331-338. [10] Masahiko Aoki, Kazuki Kakimoto, Masahiro Goto, et al. Novel therapeutic approach using drug-loaded adipose-derived stem cells for pancreatic cancer[J]. Sci Rep, 2019, 9(1): 17971. [11] Cinzia Borghese, Naike Casagrande, Corona G, et al. Adipose-derived stem cells primed with paclitaxel inhibit ovarian cancer spheroid growth and overcome paclitaxel resistance[J]. Pharmaceutics, 2020, 12(5): 401. [12] Lu Jui-hua, Peng Bou-yue, Chang Chun-chao, et al. Tumor-targeted immunotherapy by using primary adipose-derived stem cells and an antigen-specific protein vaccine[J]. Cancers (Basel), 2018, 10(11): 446. [13] Adriana Bajetto, Alessandra Pattarozzi, Alessandro Corsaro, et al. Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors[J]. Front Cell Neurosci, 2017, 11: 312. [14] Yang Juan, Miao Ying-lei, Chang Ye-fei, et al. Condition medium of HepG-2 cells induces the transdifferentiation of human umbilical cord mesenchymal stem cells into cancerous mesenchymal stem cells[J]. Am J Transl Res, 2016, 8(8): 3429-3438. [15] Xue Jian-guo, Zhu Yuan, Sun Zi-xuan, et al. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness[J]. BMC Cancer, 2015, 15(1): 793. [16] Li Tao, Zhang Jun, Zhang Jiahui, et al. Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice[J]. Oncotarget, 2017, 9(1): 591-606. [17] Meng Ming-yao, Li Lin, Wang Wen-ju, et al. Assessment of tumor promoting effects of amniotic and umbilical cord mesenchymal stem cells in vitro and in vivo[J]. J Cancer Res Clin Oncol, 2019, 145(5): 1133-1146. [18] Shen Ching-ju, Chan Te-fu, Chen Chien-chung, et al. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis[J]. Oncotarget, 2016, 7(23): 34172-34179. [19] Li Zhen-zhen, Ye Zhou, Zhang Xiao-long, et al. E1A-engineered human umbilical cord mesenchymal stem cells as carriers and amplifiers for adenovirus suppress hepatocarcinoma in mice[J]. Oncotarget, 2016, 7(32): 51815-51828. [20] Dong Li-yang, Ding Chao, Zheng Tin-ging, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells treated with siRNA against ELFN1-AS1 suppress colon adenocarcinoma proliferation and migration[J]. Am J Transl Res, 2019, 11(11): 6989-6999. [21] Li Xin, Liu Li-li, Yao Ju-lei, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles inhibit endometrial cancer cell proliferation and migration through delivery of exogenous miR-302a[J]. Stem Cells Int, 2019, 2019: 8108576. [22] Yuan Lei, Liu Yu-qiong, Qu Yun-hui, et al. Exosomes derived from microRNA-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression[J]. Front Oncol, 2019, 9: 1076. [23] Mohamed Abumaree, Najlaa Alshehri, Almotery A, et al. Preconditioning human natural killer cells with chorionic villous mesenchymal stem cells stimulates their expression of inflammatory and anti-tumor molecules[J]. Stem Cell Res Ther, 2019, 10(1): 50. [24] Alaa Tariq Alshareeda, Emad Rakha, Ayidah Alghwainem, et al. The effect of human placental chorionic villi derived mesenchymal stem cell on triple-negative breast cancer hallmarks[J]. PLoS One, 2018, 13(11): e0207593. [25] Marta Magatti, Silvia De Munari, Elsa Vertua, et al. Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest[J]. J Cell Mol Med, 2012, 16(9): 2208-2218. [26] Arianna Bonomi, Antonietta Silini, Elsa Vertua, et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study[J]. Stem Cell Res Ther, 2015, 6(1):155. [27] Hae Kyung Lee, Susan Finniss, Simona Cazacu, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal[J]. Oncotarget, 2013, 4(2): 346-361. [28] Zheng Lan, Zhang Dong-mei, Chen Xian-cheng, et al. Antitumor activities of human placenta-derived mesenchymal stem cells expressing endostatin on ovarian cancer[J]. PLoS One, 2012, 7(7): e39119. [29] Zhang Dong-mei, Zheng Lan, Shi Hua-shan, et al. Suppression of peritoneal tumorigenesis by placenta-derived mesenchymal stem cells expressing endostatin on colorectal cancer[J]. Int J Med Sci, 2014, 11(9): 870-879. [30] Zhang Yan-na, Duan Xiao-gang, Zhang Wen-hui, et al. Antitumor activity of pluripotent cell-engineered vaccines and their potential to treat lung cancer in relation to different levels of irradiation[J]. Onco Targets Ther, 2016, 9: 1425-1436. [31] Paola Cafforio, Luigi Viggiano, Francesco Mannavola, et al. pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo[J]. Stem Cell Res Ther, 2017, 8(1): 206. [32] Yang Jiany-ing, Lv Kui, Sun Jun-feng, et al. Anti-tumor effects of engineered mesenchymal stem cells in colon cancer model[J]. Cancer Manag Res, 2019, 11: 8443-8450. [33] Chen Dan-dan, Tang Ping, Liu Lin-xiang, et al. Bone marrow-derived mesenchymal stem cells promote cell proliferation of multiple myeloma through inhibiting T cell immune responses via PD-1/PD-L1 pathway[J]. Cell Cycle, 2018, 17(7): 858-867. [34] Mi Fei, Gong Lian-sheng. Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma[J]. Biosci Rep, 2017, 37(4): BSR20170181. [35] Chen Bin, Yu Jing, Wang Qian-qian, et al. Human Bone Marrow Mesenchymal Stem Cells Promote Gastric Cancer Growth via Regulating c-Myc[J]. Stem Cells Int, 2018, 2018: 9501747. [36] Lu Li, Chen Guo-hu, Yang Jing-jing, et al. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway[J]. Biomed Pharmacother, 2019, 112: 108625. [37] Qi Jin, Zhou Ya-li, Jiao Zuo-yi, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway[J]. Cell Physiol Biochem, 2017, 42(6): 2242-2254. [38] Huang Yao, Liu Wei, He Bing, et al. Exosomes derived from bone marrow mesenchymal stem cells promote osteosarcoma development by activating oncogenic autophagy[J]. J Bone Oncol, 2020, 21: 100280. [39] Ma Min, Chen Shi-lin, Liu Zhuo, et al. miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer[J]. Onco Targets Ther, 2017, 10: 4161-4171. [40] Wu Dong-mei, Wen Xin, Han Xin-rui, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-126-3p inhibits pancreatic cancer development by targeting ADAM9[J]. Mol Ther Nucleic Acids, 2019, 16: 229-245. [41] Shang Song, Wang Jin-feng, Chen Shi-lin, et al. Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer[J]. Cancer Med, 2019, 8(18): 7728-7740. [42] Jiang Shuang-jian, Mo Cheng-qiang, Guo Sheng-jie, et al. Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2[J]. J Exp Clin Cancer Res, 2019, 38(1): 495. [43] Wang Ai-hong, Zhou Xiao-yan, Zhao Ju-mei, et al. Therapeutic effects of bone marrow mesenchymal stem cells expressing interleukin-12 in mice bearing malignant ascites tumor[J]. Int J Clin Exp Med, 2015, 8(9): 15840-15845. [44] Sabine Galland, Ivan Stamenkovic. Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression[J]. J Pathol, 2020, 250(5): 555-572. [45] Pan Zhao-ji, Tian Yi-qing, Niu Guo-ping, et al. The emerging role of GC-MSCs in the gastric cancer microenvironment: from tumor to tumor immunity[J]. Stem Cells Int, 2019, 2019(12): 8071842. |
[1] | GAO Yan-song, ZHANG Zhi-hua, XU Kai-lun. Research Progress of FOXK1 in Neoplastic Diseases [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 28-32. |
[2] | LIU Shan, LI Wei. Research Progress on Pharmacological Effects of L-theanine [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 24-32. |
[3] | SU Xiao-mei,ZHANG Dan-shen. Research Progress in Pharmacological Activities of Ginsenoside-Rg3 [J]. Acta Neuropharmacologica, 2017, 7(1): 38-44. |
[4] | LI Peng-tao, YANG Xiao-nan, HUO Yan-li, ZHANG Hui. New Ideas of Astragalus Combined with Bone Marrow Mesenchymal Stem Cells in the Treatment of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2016, 6(2): 31-36. |
[5] | ZHANG Jing, ZOU Yu-an, DONG Xiao-hua, MA Fei, WANG Huan-huan. Experimental Study on Protective Effect of Ischemic Preconditioning on Ischemia-Reperfusion Injury [J]. ACTA NEUROPHARMACOLOGICA, 2015, 5(6): 1-5. |
[6] | WANG Qian TIAN Hui LIU Liang-jing ZHONG Ming MEI Yan-fei ZHANG Li. Establishment of model about Ulcerative Colitis and the Mechanism of Colitis-related Inflammatory Responses [J]. ACTA NEUROPHARMACOLOGICA, 2014, 4(5): 15-23. |
[7] | WEI Hui-ping, ZHU Deng- xiang, ZHANG Ai-lan, SONG Xiao-qing, CUI Le. Repairment of In Vitro Induced Neuron-like Cells on the Brain Injury in Rats [J]. ACTA NEUROPHARMACOLOGICA, 2013, 3(6): 20-24. |
[8] | CHE Jian-tu, TU Ya, WANG Kong-jiang. Fetuin Attenuates Cerebral lschemic Injury in Rats Associated with Decreases in Macrophage/Microglia and Tumor Necrosis Factor α [J]. Acta Neuropharmacologica, 2012, 2(6): 18-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||