[1] Carlos Oliva, Alessia
Soldano, Natalia Mora, et al. Regulation
of drosophila brain wiring by neuropil interactions via a slit-robo-RPTP signaling
complex [J]. Dev Cell, 2016, 39(2): 267–278.
[2] Tamer Altay, BethAnn
McLaughlin, Jane Y Wu, et al. Slit
modulates cerebrovascular inflammation and mediates neuroprotection against
global cerebral ischemia [J]. Exp Neurol, 2007, 207(2): 186-194.
[3] Swasti Chaturvedi, Darren A Yuen, Amandeep Bajwa, et al. Slit2 prevents
neutrophil recruitment and renal ischemia-reperfusion injury [J]. J Am Soc Nephrol 2013, 24(8): 1274–1287.
[4] Elly Ordan, Marko Brankatschk, Barry Dickson, et
al. Slit
cleavage is essential for producing an active, stable, non-diffusible
short-range signal that guides muscle migration [J]. Development, 2015, 142(8): 1431-1436.
[5] Su Xin-ming, Ren Yuan, Yu Na, et al. Thymoquinone
inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice [J]. Int J Immunopharmacol, 2016, 38: 70–80.
[6] Wang Li-jing,
Zhao Yuan, Han Bing, et al. Targeting
Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced
squamous cell carcinogenesis [J]. Cancer Sci, 2008, 99(3):510-517.
[7] Longa E Z,
Weinstein P R, Carlson S, et al. Reversible middle
cerebral artery occlusion without craniectomy in rats [J]. Stroke, 1989,
20(1): 84-91.
[8] Jana Slovakova,
Stephan Speicher, Natalia Sanchez-Soriano, et
al. The
actin-binding protein canoe/AF-6 forms a complex with Robo and is required for
Slit-Robo signaling during axon pathfinding at the CNS midline [J]. J
Neurosci, 2012, 32(29): 10035-10044.
[9] Kaneko Naoko,
Herranz V, Otsuka T, et al. New
neurons use Slit-Robo signaling to migrate through the glial meshwork and
approach a lesion for function regeneration [J]. Sci Adv, 2018, 4(12):
0618.
[10] Minkyung Kim, Clare H Lee, Sarah J Barnum, et al. Slit/Robo
signals prevent spinal motor neuron emigration by organizing the spinal cord
basement membrane [J]. Dev Biol, 2019, 455(2):449–457.
[11] Le Ma, Marc Tessier-Lavigne. Dual
branch-promoting and branch-repelling actions of Slit/Robo signaling on
peripheral and central branches of developing sensory axons [J]. J Neurosci,
2007, 27(25): 6843–6851.
[12] Alexandre Dubrac, Gael Genet, Roxana Ola, et al. Targeting
NCK-mediated endothelial cell front-rear polarity inhibits neo-vascularization [J]. Circulation, 2016, 133(4): 409-421.
[13] Nicolas Rama, Alexandre Dubrac, Thomas Mathivet, et
al. Slit2
signaling through Robo1 and Robo2 is required for retinal neovascularization [J]. Nat Med, 2015, 21(5): 483-491.
[14] Jiang Zheng-dong,
Liang Gang, Xiao Ying, et al. Targeting
the SLIT/ROBO pathway in tumor progression: molecular mechanisms and
therapeutic perspectives [J]. Ther Adv Med Oncol, 2019, 11:1758835919855238.
[15] Li S, Huang L, Sun Y, et al. Slit2
Promotes angiogenic activity via the Robo1-VEGFR2-ERK1/2 pathway in both in vivo
and in vitro studies [J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5210–5217.
[16] Han Hai-xiong,
Geng Jian-guo. Over-expression
of Slit2 induces vessel formation and changes blood vessel permeability in
mouse brain [J]. Acta Pharmacol Sin, 2011, 32(11): 1327-1336.
[17] Sandhya Gangaraju,
Khadeejah Sultan, Shawn Whitehead, et al. Cerebral
endothelial expression of Robo1 affects brain infiltration of polymorphonuclear
neutrophils during mouse stroke recovery [J]. Neurobio Dis, 2013, 54(1):24-31.
[18] Shin-ichiro Miura,
Yoshino Matsuo, Keijiro Saku. Transactivation
of KDR/Flk-1 by the B2 receptor induces tube formation in human coronary
endothelial cells [J]. Hypertension, 2003, 41(5): 1118-1123.
[19] Roohani Sharma, Puneet Kaur Randhawa, Nirmal Singh, et al. Bradykinin
in ischemic conditioning-induced tissue protection: Evidences and possible
mechanisms [J]. Eur J Pharmacol,
2015, 768: 58–70.
|