神经药理学报 ›› 2015, Vol. 5 ›› Issue (1): 51-58.
周思百,李金泽,刘睿,张天泰
出版日期:
2015-02-26
发布日期:
2015-07-06
通讯作者:
张天泰,男,研究员,博士生导师;研究方向:抗炎免疫药理学;Tel:01063035779,E-mail:ttzhang@imm.ac.cn
作者简介:
周思百,女,硕士;研究方向:抗AD神经炎症机制
基金资助:
国家自然科学基金资助项目(81373388)
ZHOU Si-bai, LI Jin-ze, LIU Rui, ZHANG Tian-tai
Online:
2015-02-26
Published:
2015-07-06
Contact:
张天泰,男,研究员,博士生导师;研究方向:抗炎免疫药理学;Tel:01063035779,E-mail:ttzhang@imm.ac.cn
About author:
周思百,女,硕士;研究方向:抗AD神经炎症机制
Supported by:
国家自然科学基金资助项目(81373388)
摘要: 黄酮类化合物是一类存在于多种植物中、数量种类繁多、结构复杂多样的次生代谢产物,也是多种中草药的活性成分。大量基础研究表明黄酮类化合物在多种疾病的发生发展中发挥了积极的作用,在抗阿尔茨海默病(Alzheimer’s Disease, AD)的基础与动物模型研究中,发现黄酮类化合物能够有效改善AD模型动物的学习记忆能力,延迟疾病病理进程,通过减少炎性介质产生、抑制 Aβ聚集和tau蛋白磷酸化、阻断自由基产生等多条途径调节细胞信号通路,缓解氧化应激状态,最终起到神经保护作用。本文综述了黄酮类化合物在AD中的药理作用及可能的作用机制,为黄酮类化合物抗AD的药物研发提供一些启示。
中图分类号:
周思百,李金泽,刘睿,张天泰. 黄酮类化合物防治阿尔兹海默病及药物研发研究进展[J]. 神经药理学报, 2015, 5(1): 51-58.
ZHOU Si-bai, LI Jin-ze, LIU Rui, ZHANG Tian-tai. Recent Development of the Flavonoids on the Treatment of Alzheimer’s Disease[J]. Acta Neuropharmacologica, 2015, 5(1): 51-58.
Sander Hougee, Annemarie Sanders, Joyce Faber, et al. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages [J]. Bioch Pharmacol, 2005, 69(2): 241-248.[2] Robert J Williams, Jeremy P E Spencer. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease [J]. Free Radic Biol Med, 2012, 52(1): 35-45.[3] Kristopher Beking, Amandio Vieira. Flavonoid intake and disability-adjusted life years due to Alzheimer's and related dementias: a population-based study involving twenty-three developed countries[J]. Public Health Nutr, 2010, 13(9): 1403-1409.[4] Jayasena T, Anne Poljak, George A Smythe, et al. The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease [J]. Ageing Res Rev, 2013, 12(4): 867-883.[5] Claudine Manach, Augustin Scalbert, Christine Morand, et al. Polyphenols: food sources and bioavailability [J]. Am J Clin Nutr, 2004, 79(5): 727-747.[6] Mainen J Moshi, Ramadhani S O Nondo1, Emmanuel E Haule, et al. Antimicrobial activity, acute toxicity and cytoprotective effect of Crassocephalum vitellinum (Benth.) S. Moore extract in a rat ethanol-HCl gastric ulcer model [J]. BMC Resh Notes, 2014, 7(1):91.[7] Brian Giunta, Francisco Fernandez, William V Nikolic, et al. Inflammaging as a prodrome to Alzheimer's disease [J]. J Neuroinflammation, 2008, 5:51.[8] Zeng Qiao-hui, Zhang Xue-wu, Xu Xi-lin, et al. Antioxidant and anticomplement functions of flavonoids extracted from Penthorum chinense Pursh [J]. Food Funct, 2013, 4(12): 1811-1818.[9] Kenjiro Ono, Yuji Yoshiike, Akihiko Takashima, et al. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease [J]. J Neurochem, 2003, 87(1): 172-181.[10] Georgine Agullo, Laurence Gamet-Payrastre, Stephane Manenti, et al. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition [J]. Biochem Pharmacol, 1997, 53(11): 1649-1657.[11] Jeremy P E Spencer. Flavonoids and brain health: multiple effects underpinned by common mechanisms [J]. Genes Nutr, 2009, 4(4): 243-250.[12] Ehab E Tuppo, Hugo R Arias. The role of inflammation in Alzheimer's disease [J]. Int J Biochem Cell Biol, 2005, 37(2): 289-305.[13] Clive Ballard Mycpsych, Serge Gauthier, Anne Corbett, et al. Alzheimer's disease [J]. Lancet, 2011, 377(9770): 1019-1031.[14] Filipa I Baptista, Ana G Henriques, Artur M S Silva, et al. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease [J]. ACS Chem Neurosci, 2014, 5(2): 83-92.[15] Jose Miguel Rubio-Perez, Juana Maria Morillas-Ruiz. A review: inflammatory process in Alzheimer's disease, role of cytokines [J]. Scientific World J, 2012, 2012:756357.[16] Katerina Vafeiadou, David Vauzour, Hung Yi Lee, et al. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury [J]. Arc Biochem Biophys, 2009, 484(1): 100-109.[17] Wu Ling-Hsuan, Lin Ching-ju, Lin Yu-shu, et al. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression [J]. Mol Neurobiol, 2015, Doi: 10.1007/s12035-014-9042-9.[18] Ravikanth Velagapudi, Mutallib Aderogba, Olumayokun A Olajide. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-kappaB/p38-mediated neuroinflammation in activated BV2 microglia [J]. Biochim Biophys Acta, 2014, 1840(12): 3311-3319.[19] Zeng Ke-wu, Fu Hong, Liu Geng-xin, et al. Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-kappaB and JNK/p38 MAPK pathways [J]. Int Immunopharmacol, 2010, 10(6): 668-678.[20] Xi Zhong-xin, Chen Wan-sheng, Wu Zhi-jun, et al. Anti-complementary activity of flavonoids from Gnaphalium affine D. Don [J]. Food Chem, 2012, 130(1): 165-170.[21] Amod P Kulkarni, Laurie A Kellaway, Girish J Kotwal. Herbal complement inhibitors in the treatment of neuroinflammation: future strategy for neuroprotection [J]. Ann N Y Acad Sci, 2005, 1056:413-429.[22] Amod P Kulkarni, Yohannes T Ghebremariam, Girish J Kotwal. Curcumin inhibits the classical and the alternate pathways of complement activation [J]. Ann N Y Acad Sci, 2005, 1056:100-112.[23] Bonnie M Bradt, William P Kolb, Neil R Cooper. Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide [J]. J Exp Med, 1998, 188(3): 431-438.[24] Hiroko Ushikubo, Yui Tanimoto, Kazuho Abe, et al. 3,3',4',5'-tetrahydroxyflavone induces formation of large aggregates of amyloid beta protein [J]. Biol Pharm Bull, 2014, 37(5): 748-754.[25] Peter J Crouch, Susan-Marie E Harding, Anthony R White, et al. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease [J]. Int J Biochem Cell Biol, 2008, 40(2): 181-198.[26] Joseph Rogers, Ron Strohmeyer, C J Kovelowski, et al. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide [J]. Glia, 2002, 40(2): 260-269.[27] Junko Kimura, Kiyomitsu Nemoto, Akihito Yokosuka, et al. 6-demethoxynobiletin, a nobiletin-analog citrus flavonoid, enhances extracellular signal-regulated kinase phosphorylation in PC12D cells [J]. Biol Pharm Bull, 2013, 36(10): 1646-1649.[28] Hiroshi Onozuka, Akira Nakajima, Kentaro Matsuzaki, et al. Nobiletin, a citrus flavonoid, improves memory impairment and abeta pathology in a transgenic mouse model of Alzheimer's disease [J]. J Pharmacol Exp Ther, 2008, 326(3): 739-744.[29] Mie Hirohata, Kenjiro Ono, Jun-ichi Takasaki, et al. Anti-amyloidogenic effects of soybean isoflavones in vitro: Fluorescence spectroscopy demonstrating direct binding to abeta monomers, oligomers and fibrils [J]. Biochim Biophys Acta, 2012, 1822(8): 1316-1324.[30] Kavon Rezai-Zadeh, R Douglas Shytle, Bai Yun, et al. Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer's disease beta-amyloid production [J]. J Cell Mol Med, 2009, 13(3): 574-588.[31] Zheng Nan, Yuan Peng, Li Chang-hao, et al. Luteolin Reduces BACE1 expression through NF-kappaB and estrogen receptor mediated pathways in HEK293 and SH-SY5Y Cells [J]. J Alzheimers Dis, 2015, 44: 561-572.[32] Zeng Ke-wu, Ko Hyeonseok, Yang Hyun K O, et al. Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells [J]. Neuropharmacology, 2010, 59(6): 542-550.[33] Bess Frost, Jürgen Götz, Mel B Feany, et al. Connecting the dots between tau dysfunction and neurodegeneration [J]. Trends Cell Biol, 2015, 25(1): 46-53.[34] Zhao Bao-lu. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease [J]. Neurochem Res, 2009, 34(4): 630-638.[35] Jana Hroudová, Namrata Singh, Zdeněk Fišar. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease [J]. BioMed Res Int, 2014, 2014:175062.[36] Choi Dong-Young, Lee Young-Jung, Hong Jin Tae, et al. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease [J]. Brain Res Bull, 2012, 87(2-3): 144-153.[37] Hsieh Hsi-Lung, Wang Hui-Hsin, Wu Wen-Bin, et al. Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-κB pathways [J]. J Neuroinflammation, 2010, 7(1): 88.[38] Joungil Choi, Craig C Conrad, Christina A Malakowsky, et al. Flavones from scutellaria baicalensis georgi attenuate apoptosis and protein oxidation in neuronal cell lines [J]. Biochim Biophys Acta, 2002, 1571(3): 201-210.[39] Korbecki J, Baranowska-Bosiacka I, Gutowska I, et al. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid [J]. J Physiol Pharmacol, 2013, 64(4): 409-421.[40] Yavuz Cakir, Scott W Ballinger. Reactive species-mediated regulation of cell signaling and the cell cycle: the role of MAPK [J]. Antioxid Redox Signal, 2005, 7(5-6): 726-740.[41] Silvia A Mandel, Tamar Amit, Limor Kalfon, et al. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG) [J]. J Alzheimers Dis, 2008, 15(2): 211-222.[42] Jennifer M Walker, Diana Klakotskaia, Deepa Ajit, et al. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer's disease mouse model [J]. J Alzheimers Dis, 2015, 44(2): 561-572.[43] Gao Zhong-hou, Huang Kai-xun, Xu Hui-bi. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells [J]. Pharmacol Res, 2001, 43(2): 173-178.[44] Obulesu M, Lakshmi M Jhansi. Apoptosis in Alzheimer's disease: an understanding of the physiology, pathology and therapeutic avenues [J]. Neurochem Res, 2014, 39(12): 2301-2312.[45] Bradley T Hyman, Yuan Jun-ying. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology [J]. Nat Rev Neurosci, 2012, 13(6): 395-406.[46] Mark P Mattson. Apoptosis in neurodegenerative disorders [J]. Nat Rev Mol Cell Biol, 2000, 1(2): 120-129.[47] Fossati S, Ghiso J, Rostagno A. Insights into caspase-mediated apoptotic pathways induced by amyloid-beta in cerebral microvascular endothelial cells [J]. Neurodegener Dis, 2012, 10(1-4): 324-328.[48] Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders [J]. Prog Neurobiol, 2014, 112: 24-49.[49] Song Juhyun, Kyung Ah Park, Won Taek Lee, et al. Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer's disease [J]. Int J Mol Sci, 2014, 15(2): 2119-2129.[50] Zhao Le, Wang Jun-li, Wang Yan-rui, et al. Apigenin attenuates copper-mediated beta-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model [J]. Brain Res, 2013, 1492:33-45.[51] Kulasekaran Gopinath, Dharmalingam Prakash, Ganapasam Sudhandiran. Neuroprotective effect of naringin, a dietary flavonoid against 3-nitropropionic acid-induced neuronal apoptosis [J]. Neurochem Int, 2011, 59(7): 1066-1073.[52] Mahmud Tareq Hassan Khan, Iikay Erdogan Orhan, Fatma Sezer Senol, et al. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies [J]. Chem Biol Interact, 2009, 181(3): 383-389.[53] Vauzour D, Vafeiadou K, Rodriguez-Mateos A, et al. The neuroprotective potential of flavonoids: a multiplicity of effects [J]. Genes Nutr, 2008, 3(3-4): 115-126.[54] Jeremy P E Spencer, David Vauzour, Catarina Rendeiro. Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects [J]. Arch Biochem Biophys, 2009, 492(1-2): 1-9.[55] Xiao Jian-bo, Chen Ting-ting, Cao Hui. Flavonoid glycosylation and biological benefits [J]. Biotechnol Adv, 2014, doi: 10.1016/j.biotechadv.2014.05.004. [56] Xiao Jian-bo, Tamar S Muzashvili, Milen I Georgiev. Advances in the biotechnological glycosylation of valuable flavonoids [J]. Biotechnol Adv, 2014, 32(6): 1145-1156.[57] Giuseppe Galati, Peter J O'brien. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties [J]. Free Radic Biol Med, 2004, 37(3): 287-303.[58] Arjan Scheepens, Kee Tan, James W. Paxton. Improving the oral bioavailability of beneficial polyphenols through designed synergies [J]. Genes Nutr, 2010, 5(1):75-87. |
[1] | 郝军荣, 牛红双, 刘宜周, 董晓华. 氧化应激在糖尿病肾病中的作用及抗氧化治疗研究进展[J]. 神经药理学报, 2020, 10(2): 33-38. |
[2] | 林思梅, 周虹, 杨宝学. 高尿酸血症与慢性肾脏病相关性研究进展[J]. 神经药理学报, 2020, 10(2): 55-64. |
[3] | 苗明三,彭孟凡,方晓艳,贾佼佼,白明. 大血藤总酚酸对局灶性脑缺血再灌注大鼠脑组织氧化应激水平和能量代谢的影响[J]. 神经药理学报, 2019, 9(1): 1-5. |
[4] | LIU Cai-hong,WU Xian,TANG Su-su,HONG Hao*. Involvement of TGR5 in Aβ-Induced Neurotoxicity in Vivo[J]. 神经药理学报, 2018, 8(4): 11-12. |
[5] | WU Xian, LV Yang-ge, TANG Su-Su, HONG Hao. Involvement of TGR5 in Aβ-induced Neurotoxicity in Vivo[J]. 神经药理学报, 2018, 8(4): 53-54. |
[6] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[7] | CHEN Fang,Arijit Ghosh,TANG Su-su,HONG Hao. Preventive Effect of Genetic Knockdown and Pharmacological Blockade of CysLT1R on Lipopolysaccharide(LPS)-induced Memory Deficit and Neurotoxicity in vivo[J]. 神经药理学报, 2018, 8(2): 29-29. |
[8] | 刘双,李小慧,高健美,刘远贵,石京山,龚其海. 磷酸二酯酶5 抑制剂淫羊藿次苷II 通过BDNF/TrkB/CREB 信号通路减轻淀粉样蛋白25-35 片段诱导的大鼠学习记忆减退作用及机制研究[J]. 神经药理学报, 2018, 8(2): 44-44. |
[9] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[10] | 蔡红玲,程建军,樊琪,缪红,商亚珍. 半枝莲黄酮对抗Aβ25-35 所致N2a 细胞损伤的作用[J]. 神经药理学报, 2017, 7(5): 9-. |
[11] | 杨杰,刘富甲,田子夏,王乐乐,谢欣梅,庞晓斌. 脉络宁对MCAO 大鼠的神经保护作用及其抗氧化机制研究[J]. 神经药理学报, 2017, 7(4): 1-7. |
[12] | 张碧琼,张耀东,吴文宁,等. 慢性地塞米松通过激活BK-NLRP1信号通路导致海马神经元损伤的研究[J]. 神经药理学报, 2017, 7(3): 48-48. |
[13] | 张丽娜,张欣,薛娟,张丹参. 中药对中枢神经退行性疾病信号通路影响的研究进展[J]. 神经药理学报, 2017, 7(3): 33-42. |
[14] | 邹征强,程玉芳,汪海涛,周中振,陈佳佳,冯红方,徐江平. PDE4 抑制剂FCPR03 对LPS 诱导小鼠抑郁样行为的改善作用及其机制研究[J]. 神经药理学报, 2017, 7(3): 43-43. |
[15] | 尹彩霞,龚其海. 淫羊藿次苷II抗慢性脑低灌注诱导的大鼠学习记忆减退及机制研究[J]. 神经药理学报, 2017, 7(2): 72-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||