神经药理学报 ›› 2016, Vol. 6 ›› Issue (1): 25-34.DOI: 10.3969/j.issn.2095-1396.2016.01.004
秦雪晴,杨志宏,孙晓波
出版日期:
2016-02-26
发布日期:
2016-05-10
通讯作者:
杨志宏,女,博士,副研究员,硕士生导师;研究方向:药物代谢动力学及中药复方配伍机制;Tel:+86-010-57833219,E-mail:
zhyang@implad.ac.cn
作者简介:
秦雪晴,女,硕士研究生;研究方向:药理学;E-mail:qxq920309@163.com
基金资助:
国家自然科学基金项目(No.81273654,No.81473579,No.81102879),国家重大新药创制项目(No.2013ZX09103002-022)
QIN Xue-qing,YANG Zhi-hong,SUN Xiao-bo
Online:
2016-02-26
Published:
2016-05-10
Contact:
杨志宏,女,博士,副研究员,硕士生导师;研究方向:药物代谢动力学及中药复方配伍机制;Tel:+86-010-57833219,E-mail:
zhyang@implad.ac.cn
About author:
秦雪晴,女,硕士研究生;研究方向:药理学;E-mail:qxq920309@163.com
Supported by:
国家自然科学基金项目(No.81273654,No.81473579,No.81102879),国家重大新药创制项目(No.2013ZX09103002-022)
摘要: 血脑屏障是由脑微血管内皮细胞、星形胶质细胞和周皮细胞等组成的动态生理结构,在维持中枢系统内环境稳态中发挥着重要作用。体外实验其高效、灵敏、快速、稳定等特点使其成为候选药物高通量筛选及生理病理机制研究的首选方案。该文主要对体外血脑屏障模型的种类、组成及应用进行评述,结合国内外文献报道,记述了经典模型的同时,详细描述了大量国内外的最新模型及先进技术,为中枢神经系统药物筛选及体外血脑屏障机制研究提供参考。
中图分类号:
秦雪晴,杨志宏,孙晓波. 血脑屏障体外模型的研究进展[J]. 神经药理学报, 2016, 6(1): 25-34.
QIN Xue-qing,YANG Zhi-hong,SUN Xiao-bo. A Review of Studies on Blood Brain Barrier in vitro Model[J]. Acta Neuropharmacologica, 2016, 6(1): 25-34.
[1] 马金柱, 王化磊, 郑学星, 等. 天然免疫屏障-血脑屏障调节的研究进展[J]. 细胞与分子免疫学杂志, 2013, 29(8): 885-888.[2] 周曼, 杨万超, 刘翔, 等. 血脑屏障结构功能及体外模型的研究进展[J]. 疑难病杂志, 2014, 13(6): 647-649.[3] William M Pardridge. The blood-brain barrier: bottleneck in brain drug development[J]. NeuroRx, 2005, 2(1): 3-14.[4] 徐猛, 李延锋, 杨本强, 等. 血脑屏障开放及其灌注成像的影像评估[J]. 中国CT和MRI杂志, 2014, 12(5): 109-111, 115.[5] 张珉, 张俊钰, 钟武. 血脑屏障开放方法研究进展[J]. 国际药学研究杂志, 2016, 43(1): 126-133.[6] Wolfgang Löscher, Heidrun Potschka. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases[J]. Prog Neurobiol, 2005, 76(1): 22-76.[7] Joana Bicker, Gilberto Alves, Ana Fortuna, et al. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: A review[J]. Eur J Pharm Biopharm, 2014, 87(3): 409-432.[8] 李珺, 彭亮, 黄胜和, 吴春华, 等. 体外血脑屏障模型的建立及发展[J]. 广东医学, 2009, 30(4): 647-648.[9] 张峻颖, 刁劲夫, 吕青林, 等. 药物跨血脑屏障转运的体外模型及其研究进展[J]. 中国新药杂志, 2015, 24(21): 2453-2458. [10] 刘瑶, 俞春娜, 曾苏. P-糖蛋白高表达马丁达比狗肾上皮细胞系的建立[J]. 国药学杂志, 2009, 44(21): 1608-1613.[11] Ryota Kikuchi, Sonia M de Morais, J Cory Kalvass. In vitro P-glycoprotein efflux ratio can predict the in vivo brain penetration regardless of biopharmaceutics drug disposition classification system class[J]. Drug Metab Dispos, 2013, 41(12): 2012-2017.[12] Hu Hai-hong, Bian Yi-cong, Liu Yao, et al. Evaluation of blood-brain barrier and blood-cerebrospinal fluid barrier permeability of 2-phenoxy-indan-1-one derivatives using in vitro cell models[J]. Int J Pharm, 2014, 460(1-2): 101-107.[13] 颜锐思, 张晓露, 杨慧, 等. 药物平行人工膜渗透性试验的研究进展[J]. 今日药学, 2012, 22(1): 51-55.[14] Stephen M Carl, David J Lindley, Pierre O Couraud, et al. ABC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood-brain barrier cell line[J]. Mol Pharm, 2010, 7(4): 1057-1068.[15] Sandrine Dauchy, Florence Miller, Pierre-Olivier Couraud, et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells[J]. Biochem Pharmacol, 2009, 77(5): 897-909. [16] 鲍欢, 张志琳, 包仕尧. 体外血脑屏障细胞模型的建立[J]. 国外医学脑血管疾病分册, 2002, 10(6): 473-475.[17] Atsuko Kamiichi, Tomomi Furihata, Satoshi Kishida, et al. Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: A promising tool for human blood-brain barrier studies[J]. Brain Res, 2012, 1488: 113-122.[18] 王卫东, 黄虹, 邹浩元, 等. 体外血脑屏障模型的建立[J]. 医学理论与实践, 2008, 21(1): 5-8. [19] Romeo Cecchelli, Sezin Aday, Emmanuel Sevin, et al. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells[J]. PLoS One, 2014, 9(6): e99733.[20] Ethan S Lippmann, Abraham Al-Ahmad, Samira M Azarin, et al. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources[J]. Sci Rep, 2014, 4: 4160.[21] Olga C Colgan, Nora T Collins, Gail Ferguson, et al. Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function[J]. Brain Res, 2008, 1193: 84-92.[22] Mathew Smith, Yadollah Omidi, Mark Gumbleton. Primary porcine brain microvascular endothelial cells: biochemical and functional characterization as a model for drug transport and targeting[J]. J Drug Target, 2007, 15(4): 253-268.[23] 陈雪, 王军, 王伟, 等. 体外血脑屏障模型的建立及功能测定[J]. 卒中与神经疾病, 2014, 21(4): 195-198.[24] Shinsuke Nakagawa, Maria A Deli, Hiroko Kawaguchi, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes[J]. Neurochem Int, 2009, 54(3-4): 253-263.[25] 胡利民, 范祥, 张艳军, 等. 大鼠脑微血管内皮细胞与星形胶质细胞共培养血脑屏障体外模型的建立[J]. 天津中医药, 2005, 22(2): 149-151.[26] Venkatraman Siddharthan V, Yuri V Kim, Liu Su-yi, et al. Human astrocytes/astrocyte conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells[J]. Brain Res, 2007, 1147: 39-50.[27] 赵康峰, 王翀, 孔建, 等. 不同血脑屏障模型的建立及其功能特点[J]. 环境与健康杂志, 2012, 29(2): 127-130.[28] Elodie Vandenhaute, Emmanuel Sevin, Dorothee Hallier-Vanuxeem, et al. Case study: adapting in vitro blood-brain barrier models for use in early-stage drug discovery[J]. Drug Discov Today, 2012, 17(7-8): 285-290.[29] 查雨锋, 傅晓钟, 张顺, 等. 大鼠脑微血管内皮细胞与周皮细胞、星形胶质细胞共培养建立体外血脑屏障模型[J]. 中国药理学通报, 2015, 31(5): 730-735. [30] Nicolas Perrière, Salah Yousif, Sylvie Cazaubon, et al. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters[J]. Brain Res, 2007, 1150: 1-13.[31] Yung-Chih Kuo, Chin-Hsun Lu. Effect of human astrocytes on the characteristics of human brain-microvascular endothelial cells in the blood-brain barrier[J]. Colloids Surf B Biointerfaces, 2011, 86(1): 225-231.[32] Gilda Shayan, Yong Seok Choi, Eric V Shusta, et al. Murine in vitro model of the blood-brain barrier for evaluating drug transport[J]. Eur J Pharm Sci, 2011, 42(1-2): 148-155.[33] Thomas Tilling, Christiane Engelbertz, Stephan Decker, et al. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures[J]. Cell Tissue Res, 2002, 310(1): 19-29.[34] Balabhaskar Prabhakarpandian, Shen Ming-che, Joseph B Nichols, et al. SyM-BBB: a microfluidic blood brain barrier model[J]. Lab Chip, 2013, 13(6): 1093-1101.[35] Luca Cucullo, Mark S McAllister, Kelly Kight, et al. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier[J]. Brain Res, 2002, 951(2): 243-254.[36] Luca Cucullo, Mohammed Hossain, Vikram Puvenna, et al. The role of shear stress in blood-brain barrier endothelial physiology[J]. BMC Neurosci, 2011, 12: 40.[37] Stefano Santaguida, Damir Janigro, Mohammed Hossain, et al. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study[J]. Brain Res, 2006, 1109(1): 1-13.[38] Luca Cucullo, Mohammed Hossain, William Tierney, et al. A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box[J]. BMC Neurosci, 2013, 14: 18.[39] Anna Tourovskaia, M Elizabeth Fauver, Gregory Kramer, et al. Tissue-engineered microenvironment systems for modeling human vasculature[J]. Exp Biol Med (Maywood), 2014, 239(9): 1264-1271.[40] Humpel C. Neuroscience forefront review organotypic brain slice cultures: A review[J]. Neurosci, 2015, 305: 86-98.[41] Nicolas Daviaud, Elisa Garbayo, Paul C Schiller, et al. Organotypic cultures as tools for optimizing central nervous system cell therapies[J]. Exp Neurol, 2013, 248: 429-440.[42] Mazzone G L, Mladinic M, Nistri A. Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord[J]. Cell Death Dis, 2013, 4(10): e902.[43] Bjame W Kristensen, Jens Noraberg, Pierre Thiébaud, et al. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures[J]. Brain Res, 2001, 896(1-2): 1-17.[44] Se Hoon Choi, Young Hye Kim, Matthias Hebisch, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease[J]. Nature, 2014, 515(7526): 274-278.[45] Lauren L Bischel, Peter N Coneski, Jeffrey G Lundin, et al. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue[J]. J Biomed Mater Res A, 2016, 104(4): 901-909.[46] Kristin Sisson, Zhang Chu, Mary C Farach-Carson, et al. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin[J]. J Biomed Mater Res A, 2010, 94(4): 1312-1320.[47] Zhao Li, He Chen-guang, Gao Yong-juan, et al. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method[J]. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 26-34.[48] Joseph L Lowery, Neha Datta, Gregory C Rutledge. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (epsilon-caprolactone) fibrous mats[J]. Biomaterials, 2010, 31(3): 491-504.[49] Qu Jing, Wang D, Wang H, et al. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration[J]. J Biomed Mater Res A, 2013, 101(9): 2667-2678.[50] Soza G, Grosso R, Christopher Nimsky, et al. Determination of the elasticity parameters of brain tissue with combined simulation and registration[J]. Int J Med Robot, 2005, 1(3): 87-95.[51] Edward C Carlson, Janice L Audette, Nicole J Veitenheimer, et al. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 271(2): 332-341.[52] Richard A Hawkins, Robyn L O'Kane, Ian Simpson, et al. Structure of the blood-brain barrier and its role in the transport of amino acids[J]. J Nutr, 2006, 136(1 Suppl): 218-226.[53] Sabine Stoll, Jerome Delon, Tilmann M Brotz, et al. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes[J]. Science, 2002, 296(5574): 1873-1876.[54] Adam Engler, Lucie Bacakova, Cynthia Newman, et al. Substrate compliance versus ligand density in cell on gel responses[J]. Biophys J, 2004, 86(1 Pt 1): 617-628.[55] Gavin Morris, Jack Bridge, L A Brace, et al. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells[J]. Biofabrication, 2014, 6(3): 035014.[56] Bryce M Whited, Marissa Nichole Rylander. The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow[J]. Biotechnol Bioeng, 2014, 111(1): 184-195.[57] Tom Hodgkinson, Yuan Xue-feng, Ardeshir Bayat. Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models[J]. J Tissue Eng, 2014, 5: 1-13.[58] Gregory T Christopherson, Song Hong-jun, Mao Hai-quan. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation[J]. Biomaterials, 2009, 30(4): 556-564.[59] 孙进, 程刚, 何仲贵, 等. 磷脂膜色谱用于评价药物与有序磷脂膜的相互作用[J]. 药学学报, 2003, 38(9): 702-706.[60] Manfre Kansy, Frank Senner, Klaus Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes[J]. J Med Chem, 1998, 41(7): 1007-1010.[61] Jurgen Mensch, Anouche Melis, Claire Mackie, et al. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability[J]. Eur J Pharm Biopharm, 2010, 74(3): 495-502.[62] Di Li, Edward H Kerns, Kristi Fan, et al. High throughput artificial membrane permeability assay for blood-brain barrier[J]. Eur J Med Chem, 2003, 38(3): 223-232.[63] Romeo Cecchelli, Vincent Berezowski, Stefan Lundquist, et al. Modelling of the blood-brain barrier in drug discovery and development[J]. Nat Rev Drug Discov, 2007, 6(8): 650-661.[64] Christian Weidenfeller, Sebastian Schrot, Alla Zozulya, et al. Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone[J]. Brain Res, 2005, 1053(1-2): 162-174.[65] Sebastian Schrot, Christian Weidenfeller, Tilman E Schäffer, et al. Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro[J]. Biophys J, 2005, 89(6): 3904-3910.[66] Carola Förster, Christine Silwedel, Nikola Golenhofen, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system[J]. J Physiol, 2005, 565(Pt 2): 475-486.[67] Carola Förster, Malgorzata Burek, Ignacio Romero, et al. Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier[J]. J Physiol, 2008, 586(7): 1937-1949.[68] Anthony R Calabria, Christian Weidenfeller, Angela R Jones, et al. Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction[J]. J Neurochem, 2006, 97(4): 922-933.[69] Diane M Wuest, Kelvin H Lee. Optimization of endothelial cell growth in a murine in vitro blood-brain barrier model[J]. Biotechnol J, 2012, 7(3): 409-417.[70] Carina A Cantrill, Robert A Skinner, Nancy J Rothwell, et al. An immortalised astrocyte cell line maintains the in vivo phenotype of a primary porcine in vitro blood-brain barrier model[J]. Brain Res, 2012, 1479: 17-30. |
[1] | 张健美, 张丹参. 溃疡性结肠炎中西治疗的研究进展#br#[J]. 神经药理学报, 2020, 10(5): 43-47. |
[2] | 张浩楠, 杨辉. 天然药物对脑缺血再灌注损伤保护作用的研究进展[J]. 神经药理学报, 2020, 10(4): 14-20. |
[3] | 金姗, 张丹参. 利多卡因透皮制剂的研究进展[J]. 神经药理学报, 2020, 10(3): 16-20. |
[4] | 杨靖,苑文英. 弓形虫感染对神经组织损伤及通过血脑屏障机制[J]. 神经药理学报, 2019, 9(5): 40-43. |
[5] | 郭沫然,周城伟,张志华. 肾上腺髓质素在心、肺相关性疾病中的研究进展[J]. 神经药理学报, 2019, 9(1): 31-35. |
[6] | 张海威,张丹参,苏晓梅,赵凯燕,武春阳,张力. 建立体外血脑脊液屏障模型方法学研究[J]. 神经药理学报, 2018, 8(3): 1-8. |
[7] | 边芳,侯艳宁. ATP 敏感钾通道在神经退行性疾病中的研究进展[J]. 神经药理学报, 2017, 7(5): 52-58. |
[8] | 孙争宇,李林*. 精神分裂症认知障碍研究进展[J]. 神经药理学报, 2017, 7(3): 60-60. |
[9] | 徐唯哲,李晓蓉,熊杰,徐平湘,薛明. 基于血脑屏障的神经药物转运体研究概况[J]. 神经药理学报, 2016, 6(6): 45-54. |
[10] | 张海威,张力. 乔松素临床应用和作用机制的研究进展[J]. 神经药理学报, 2016, 6(5): 45-52. |
[11] | 陈建,侯宏卫,刘勇,王安,胡清源. 血脑脊液屏障转运体研究方法的进展[J]. 神经药理学报, 2016, 6(3): 44-55. |
[12] | 王莹莹, 宋修云, 王奇, 陈乃宏. 天然抗氧化剂在阿尔兹海默病中的应用研究进展[J]. 神经药理学报, 2015, 5(6): 30-34. |
[13] | 郭敏, 李刚. 突触可塑性相关蛋白的研究进展[J]. 神经药理学报, 2013, 3(6): 57-64. |
[14] | 陈方, 胡朦, 杜贯涛,刘广军, 洪浩. 2型糖尿病认知障碍发生机制研究进展[J]. 神经药理学报, 2013, 3(3): 27-33. |
[15] | 黄继云,韩峰. 硝化应激参与介导缺血性脑损伤的研究进展[J]. 神经药理学报, 2011, 1(5): 56-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||