神经药理学报 ›› 2013, Vol. 3 ›› Issue (2): 49-57.
Luo Yi, Chen Jian-guo, Wang Fang
出版日期:
2013-04-26
发布日期:
2014-06-27
通讯作者:
Dr. Wang Fang,Female, Born in 1975,Professor, Doctoral tutor;Research direction:Neuropsychopharmacology;Fax: +86 27 83692608;Tel: +86 27 83692636; E-mail addresses: wangfangtj0322@163.com
作者简介:
Luo Yi,Male,PhD student; Research direction:Neuroscience;E-mail:luoyitj@126.com
基金资助:
National Basic Research Program of China (the 973 Program, No. 2013CB531303 to Dr. J.G.C.; No. 2014CB744601 to F.W.) and the National Natural Scientific Foundation of China (NSFC, No. 81222048 to F.W.). It was also supported by the International Science & Technology Cooperation Program of China (No. 2011DFA32670 to J.G.C.) and PCSIRT (No. IRT13016).
Luo Yi, Chen Jian-guo, Wang Fang
Online:
2013-04-26
Published:
2014-06-27
Contact:
Dr. Wang Fang,Female, Born in 1975,Professor, Doctoral tutor;Research direction:Neuropsychopharmacology;Fax: +86 27 83692608;Tel: +86 27 83692636; E-mail addresses: wangfangtj0322@163.com
About author:
Luo Yi,Male,PhD student; Research direction:Neuroscience;E-mail:luoyitj@126.com
Supported by:
National Basic Research Program of China (the 973 Program, No. 2013CB531303 to Dr. J.G.C.; No. 2014CB744601 to F.W.) and the National Natural Scientific Foundation of China (NSFC, No. 81222048 to F.W.). It was also supported by the International Science & Technology Cooperation Program of China (No. 2011DFA32670 to J.G.C.) and PCSIRT (No. IRT13016).
摘要: 在经历过创伤性事件的人群中,常常会出现创伤后应激综合症以及重度抑郁症并发的现象。但是创伤后应激综合症后易发重度抑郁症的细胞分子机制还未见报道。在这篇综述中,我们从突触可塑性的角度,将创伤后应激综合症以及重度抑郁症中下丘脑-垂体-肾上腺素轴、皮质醇、炎症因子以及神经营养因子等指标的改变进行了比较。这些研究结果提示神经营养因子、尤其是脑源性的神经营养因子极有可能是联系创伤后应激综合症以及重度抑郁症的关键因子。后续的研究应该侧重于脑源性的神经营养因子在创伤后应激综合症后易发抑郁症的作用机制中。调控脑源性神经营养因子的药物将可以用来预防创伤后应激综合症后重度抑郁症的发生。
Luo Yi, Chen Jian-guo, Wang Fang. Brain-Derived Neurotrophic Factor: a Link between Posttraumatic Stress Disorder and Major Depressive Disorder[J]. 神经药理学报, 2013, 3(2): 49-57.
Luo Yi, Chen Jian-guo, Wang Fang. Brain-Derived Neurotrophic Factor: a Link between Posttraumatic Stress Disorder and Major Depressive Disorder[J]. ACTA NEUROPHARMACOLOGICA, 2013, 3(2): 49-57.
[1] Ronald C Kessler, Amanda Sonnega, Evelyn Bromet, et al. Posttraumatic stress disorder in the National Comorbidity Survey [J]. Arch Gen Psychiatry, 1995, 52(12): 1048-1060. [2] Naomi Breslau, Chase G A, Anthony J C. The uniqueness of the DSM definition of post-traumatic stress disorder: implications for research [J]. Psychol Med, 2002, 32(4): 573-576. [3] Ronald C Kessler. Posttraumatic stress disorder: the burden to the individual and to society [J]. J Clin Psychiatry, 2000, 61 Suppl 5: 4-12; discussion 13-14. [4] Naomi Breslau, Glenn C Davis, Edward L Peterson, et al. A second look at comorbidity in victims of trauma: the posttraumatic stress disorder-major depression connection [J]. Biol Psychiatry, 2000, 48(9): 902-909. [5] Mirjam J Nijdam, Berthold P R Gersons, Miranda Olff. The role of major depression in neurocognitive functioning in patients with posttraumatic stress disorder [J]. Eur J Psychotraumatol, 2013, 4. doi: 10.3402/ejpt.v4i0.19979. [6] Francesca Calabrese, Raffaella Molteni, Giorgio Racagni G, et al. Neuronal plasticity: a link between stress and mood disorders [J]. Psychoneuroendocrinology, 2009, 34 Suppl 1: S208-216. [7] Shawn Hayley, Darcy Litteljohn. Neuroplasticity and the next wave of antidepressant strategies [J]. Front Cell Neurosci, 2013, 7: 218. [8] Mi Kyoung Seo, Chan Hong Lee, Hye Yeon Cho, et al. Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures [J]. Neuropharmacology, 2013, 79:222-33. [9] Timmermans W, Xiong H, Hoogenraad C C, et al. Stress and excitatory synapses: from health to disease [J]. Neuroscience, 2013, 248: 626-636. [10] Majda Grah, Mate Mihanovic, Nedjeljka Ruljancic, et al. Brain-derived neurotrophic factor as a suicide factor in mental disorders [J]. Acta Neuropsychiatr, 2014, 26(6): 356-363. [11] Graciano Leal, Pedro M Afonso, Ivan L Salazar, et al. Regulation of hippocampal synaptic plasticity by BDNF [J]. Brain Res, 2014, pii: S0006-8993(14)01421-8. [12] Raul Andero, Dennis C Choi, Kerry J Ressler. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders [J]. Prog Mol Biol Transl Sci, 2014, 122: 169-192. [13] Sharain Suliman, Sian M J Hemmings, Soraya Seedat. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis [J]. Front Integr Neurosci, 2013, 7: 55. [14] Armando Piccinni, Antonello Veltri, Davide Costanzo, et al. Decreased plasma levels of brain-derived neurotrophic factor (BDNF) during mixed episodes of bipolar disorder [J]. J Affect Disord, 2015, 171: 167-170. [15] Christopher R Green, Stefani Corsi-Travali, Alexander Neumeister. The Role of BDNF-TrkB Signaling in the Pathogenesis of PTSD [J]. J Depress Anxiety, 2013, 2013(S4), pii: 006. [16] Sian M J Hemmings, Lindi I Martin, Marisa Klopper, et al. BDNF Val66Met and DRD2 Taq1A polymorphisms interact to influence PTSD symptom severity: a preliminary investigation in a South African population [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 40: 273-280. [17] Breno S Diniz, Antonio L Teixeira, Rodrigo Machado-Vieira, et al. Reduced cerebrospinal fluid levels of brain-derived neurotrophic factor is associated with cognitive impairment in late-life major depression [J]. J Gerontol B Psychol Sci Soc Sci, 2014, 69(6): 845-851. [18] Paolo Stratta, Roberto L Bonanni, Patrizia Sanita, et al. Plasma brain-derived neurotrophic factor in earthquake survivors with full and partial post-traumatic stress disorder [J]. Psychiatry Clin Neurosci, 2013, 67(5): 363-364. [19] Singewald N, Schmuckermair C, Whittle N, et al. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders [J]. Pharmacol Ther, 2014, pii: S0163-7258(14)00233-2. [20] Joana Bucker, Gabriel G Fries, Flavio Kapczinski, et al. Brain-derived neurotrophic factor and inflammatory markers in school-aged children with early trauma [J]. Acta Psychiatr Scand, 2014. 131(5):12358. [21] Marie-Louise Meewisse, Johannes B Reitsma, Giel-Jan de Vries, et al. Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis [J]. Br J Psychiatry, 2007, 191: 387-392. [22] Charlotte AC Horn, Robert H Pietrzak, Stefani Corsi-Travali, et al. Linking plasma cortisol levels to phenotypic heterogeneity of posttraumatic stress symptomatology [J]. Psychoneuroendocrinology, 2014, 39: 88-93. [23] Michele Wessa, Nicolas Rohleder, Clemens Kirschbaum, et al. Altered cortisol awakening response in posttraumatic stress disorder [J]. Psychoneuroendocrinology, 2006, 31(2): 209-215.[24] Michael Griffin, Patricia A Resick, Rachel Yehuda. Enhanced cortisol suppression following dexamethasone administration in domestic violence survivors [J]. Am J Psychiatry, 2005, 162(6): 1192-1199. [25] Jessica M Gill, Leo Saligan, Stephanie Woods, et al. PTSD is associated with an excess of inflammatory immune activities [J]. Perspect Psychiatr Care, 2009, 45(4): 262-277. [26] Moises E Bauer, Andrea Wieck, Rodrigo Pestana Lopes, et al. Interplay between neuroimmunoendocrine systems during post-traumatic stress disorder: a minireview [J]. Neuroimmunomodulation, 2010, 17(3): 192-195. [27] Amy L Mahan, Kerry J Ressler. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder [J]. Trends Neurosci, 2012, 35(1): 24-35. [28] Jamie Peters, Laura M Dieppa-Perea, Loyda M Melendez, et al. Induction of fear extinction with hippocampal-infralimbic BDNF [J]. Science, 2010, 328(5983): 1288-1290. [29] Danay Baker-Andresen, Carlotte R Flavell, Li Xiang, et al. Activation of BDNF signaling prevents the return of fear in female mice [J]. Learn Mem, 2013, 20(5): 237-240. [30] Raffael Kalisch, Elian Korenfeld, Klaas E Stephan, et al. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network [J]. J Neurosci, 2006, 26(37): 9503-9511. [31] Milad M R, Pitman R K, Ellis C B, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder [J]. Biol Psychiatry, 2009, 66(12): 1075-1082. [32] Fatima Soliman, Charles E Glatt, Kevin G Bath, et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human [J]. Science, 2010, 327(5967): 863-866. [33] Chen Zhe-yu, Jing De-qiang, Kevin G Bath, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior [J]. Science, 2006, 314(5796): 140-143. [34] Kim L Felmingham, Carol Dobson-Stone, Peter R Schofield, et al. The brain-derived neurotrophic factor Val66Met polymorphism predicts response to exposure therapy in posttraumatic stress disorder [J]. Biol Psychiatry, 2013, 73(11): 1059-1063. [35] Rual Andero, Kerry J Ressler. Fear extinction and BDNF: translating animal models of PTSD to the clinic [J]. Genes Brain Behav, 2012, 11(5): 503-512. [36] Sevil Duvarci, Karim Nader. Characterization of fear memory reconsolidation [J]. J Neurosci, 2004, 24(42): 9269-9275. [37] Gonzalo Laje, Francis J McMahon. The pharmacogenetics of major depression: past, present, and future [J]. Biol Psychiatry, 2007, 62(11): 1205-1207. [38] Masahiro Hashizume, Mitsugu Hachisu, Hideyo Yoshida, et al. Serum brain-derived neurotrophic factor level in elderly women depression: A community-based study [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 56: 109-116. [39] Keri L Pinna, Dawn M Johnson, Douglas L Delahanty. PTSD, comorbid depression, and the cortisol waking response in victims of intimate partner violence: preliminary evidence [J]. Anxiety Stress Coping, 2013. 27(3):253-69. [40] Moises E Bauer, Andrew Papadopoulos, Lucia Poon, et al. Altered glucocorticoid immunoregulation in treatment resistant depression [J]. Psychoneuroendocrinology, 2003, 28(1): 49-65. [41] Charles L Raison, Andrew H Miller. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders [J]. Am J Psychiatry, 2003, 160(9): 1554-1565. [42] Rodrigo Grassi-Oliveira, Elisa Brietzke, Julio C Pezzi, et al. Increased soluble tumor necrosis factor-alpha receptors in patients with major depressive disorder [J]. Psychiatry Clin Neurosci, 2009, 63(2): 202-208. [43] Raison C L, Capuron L, Miller A H. Cytokines sing the blues: inflammation and the pathogenesis of depression [J]. Trends Immunol, 2006, 27(1): 24-31. [44] Yang Kan, Xie Guang-rong, Zhang Zhong-xing, et al. Levels of serum interleukin (IL)-6, IL-1beta, tumour necrosis factor-alpha and leptin and their correlation in depression [J]. Aust N Z J Psychiatry, 2007, 41(3): 266-273. [45] Simon N M, McNamara K, Chow C W, et al. A detailed examination of cytokine abnormalities in Major Depressive Disorder [J]. Eur Neuropsychopharmacol, 2008, 18(3): 230-233. [46] Dwivedi Y, Rizavi H S, Conley R R, et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects [J]. Arch Gen Psychiatry, 2003, 60(8): 804-815. [47] Bocchio-Chiavetto L, Zanardini R, Bortolomasi M, et al. Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients [J]. Eur Neuropsychopharmacol, 2006, 16(8): 620-624. [48] Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications [J]. Biol Psychiatry, 2008, 64(6): 527-532. [49] Turner CA, Akil H, Watson SJ, et al. The fibroblast growth factor system and mood disorders [J]. Biol Psychiatry, 2006, 59(12): 1128-1135. [50] Hunsberger JG, Newton SS, Bennett AH, et al. Antidepressant actions of the exercise-regulated gene VGF [J]. Nat Med, 2007, 13(12): 1476-1482. [51] Thakker-Varia S, Krol JJ, Nettleton J, et al. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus [J]. J Neurosci, 2007, 27(45): 12156-12167. [52] Warner-Schmidt JL, Duman RS. VEGF as a potential target for therapeutic intervention in depression [J]. Curr Opin Pharmacol, 2008, 8(1): 14-19. [53] Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression [J]. J Neurosci, 2002, 22(8): 3251-3261.[54] Chourbaji S, Hellweg R, Brandis D, et al. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior [J]. Brain Res Mol Brain Res, 2004, 121(1-2): 28-36.[55] Fumagalli F, Bedogni F, Perez J, et al. Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress [J]. Eur J Neurosci, 2004, 20(5): 1348-1354.[56] Koo JW, Park CH, Choi SH, et al. The postnatal environment can counteract prenatal effects on cognitive ability, cell proliferation, and synaptic protein expression [J]. FASEB J, 2003, 17(11): 1556-1558.[57] Roceri M, Cirulli F, Pessina C, et al. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions [J]. Biol Psychiatry, 2004, 55(7): 708-714.[58] Polyakova M, Stuke K, Schuemberg K, et al. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis [J]. J Affect Disord, 2014, 174C: 432-440.[59] Hashimoto K. Brain-derived neurotrophic factor (BDNF) and its precursor proBDNF as diagnostic biomarkers for major depressive disorder and bipolar disorder [J]. Eur Arch Psychiatry Clin Neurosci, 2014 Nov 2. [Epub ahead of print].[60] Duman CH, Schlesinger L, Kodama M, et al. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment [J]. Biol Psychiatry, 2007, 61(5): 661-670.[61] Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety [J]. Nat Neurosci, 2007, 10(9): 1089-1093.[62] Taliaz D, Stall N, Dar DE, et al. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis [J]. Mol Psychiatry, 2010, 15(1): 80-92.[63] Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex [J]. Nat Neurosci, 2006, 9(6): 735-737.[64] Cheeran B, Talelli P, Mori F, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS [J]. J Physiol, 2008, 586(Pt 23): 5717-5725.[65] Brita Fritsch, Janine Reis, Keri Martinowich, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning [J]. Neuron, 2010, 66(2): 198-204.[66] Shigeo Sakuragi, Keiko Tominaga-Yoshino, Akihiko Ogura. Involvement of TrkB- and p75(NTR)-signaling pathways in two contrasting forms of long-lasting synaptic plasticity [J]. Sci Rep, 2013, 3: 3185.[67] Priit Pruunsild, Anna Kazantseva, Tamara Aid, et al. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters [J]. Genomics, 2007, 90(3): 397-406.[68] Michael F Egan, Masami Kojima, Joseph H Callicott, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function [J]. Cell, 2003, 112(2): 257-269.[69] Janusz K Rybakowski. BDNF gene: functional Val66Met polymorphism in mood disorders and schizophrenia [J]. Pharmacogenomics, 2008, 9(11): 1589-1593.[70] Chen L, Lawlor DA, Lewis SJ, et al. Genetic association study of BDNF in depression: finding from two cohort studies and a meta-analysis [J]. Am J Med Genet B Neuropsychiatr Genet, 2008, 147B(6): 814-821.[71] Gratacos M, Soria V, Urretavizcaya M, et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders [J]. Pharmacogenomics J, 2008, 8(2): 101-112.[72] Johannes Schumacher, Rami Abou Jamra, Tim Becker, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression [J]. Biol Psychiatry, 2005, 58(4): 307-314.[73] Verhagen M, van der Meij A, van Deurzen P A, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity [J]. Mol Psychiatry, 2010, 15(3): 260-271.[74] Pireer Oswald, Jurgen Del-Favero, Lsabelle Massat, et al. No implication of brain-derived neurotrophic factor (BDNF) gene in unipolar affective disorder: evidence from Belgian first and replication patient-control studies [J]. Eur Neuropsychopharmacol, 2005, 15(5): 491-495.[75] Frederic Marmigere, Laurent Givalois, Florence Rage, et al. Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats [J]. Hippocampus, 2003, 13(5): 646-655.[76] Molteni R, Lipska B K, Weinberger D R, et al. Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia [J]. Mol Psychiatry, 2001, 6(3): 285-292.[77] Raffaella Molteni, Francesca Calabrese, Annamaria Cattaneo, et al. Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine [J]. Neuropsychopharmacology, 2009, 34(6): 1523-1532.[78] Roceri M, Hendriks W, Racagni G, et al. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus [J]. Mol Psychiatry, 2002, 7(6): 609-616.[79] Tania L Roth, Farah D Lubin, Adam J Funk, et al. Lasting epigenetic influence of early-life adversity on the BDNF gene [J]. Biol Psychiatry, 2009, 65(9): 760-769.[80] Obiamaka Obianyo, Keqiang Ye. Novel small molecule activators of the Trk family of receptor tyrosine kinases [J]. Biochim Biophys Acta, 2013, 1834(10): 2213-2218.[81] Marion Rodier, Anne Prigent-Tessier, Yannick Bejot, et al. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism? [J]. PLoS One, 2014, 9(3): e92416.[82] Ricken R, Adli M, Lange C, et al. Brain-derived neurotrophic factor serum concentrations in acute depressive patients increase during lithium augmentation of antidepressants [J]. J Clin Psychopharmacol, 2013, 33(6): 806-809.[83] Chien-Hung Shih, Chien-Jen Chen, Linyi Chen. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth [J]. PLoS One, 2013, 8(11): e79619.[84] Jiang Bo, Xiong Zhe, Yang Jun, et al. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus [J]. Br J Pharmacol, 2012, 166(6): 1872-1887.[85] Yu Hai-yang, Yin Zhu-jun, Yang Shui-jin, et al. Baicalin reverse AMPA receptor expression and neuron apoptosis in chronic unpredictable mild stress rats [J]. Biochem Biophys Res Commun, 2014, 451(4): 467-472.[86] Jiang Mei-ling, Zhang Zhi-xian, Li Yun-zhan, et al. Antidepressant-like effect of evodiamine on chronic unpredictable mild stress rats [J]. Neurosci Lett, 2014, 588:154-158. |
[1] | 倪爽,苗泽远,王家昕,等. DMSO 联合神经营养因子BDNF 诱导BMSCs 向神经样细胞分化[J]. 神经药理学报, 2019, 9(5): 5-9. |
[2] | 朱东海,林娟,郭海彪,李楚源. 脑心清片对脂多糖诱导的BV-2 细胞的抗炎及抗凋亡作用[J]. 神经药理学报, 2018, 8(2): 37-37. |
[3] | 刘双,李小慧,高健美,刘远贵,石京山,龚其海. 磷酸二酯酶5 抑制剂淫羊藿次苷II 通过BDNF/TrkB/CREB 信号通路减轻淀粉样蛋白25-35 片段诱导的大鼠学习记忆减退作用及机制研究[J]. 神经药理学报, 2018, 8(2): 44-44. |
[4] | 曾菊,程斌,程肖蕊,周文霞,张永祥. 基于LPS 诱导小鼠炎症模型的LW-AFC 抗炎作用研究[J]. 神经药理学报, 2018, 8(2): 49-49. |
[5] | 肖 婷,马天阳, 徐祥清, 王克威. 大鼠慢性不可预测温和应激与小鼠社会挫败抑郁症模型的建立与行为学评价[J]. 神经药理学报, 2018, 8(1): 45-53. |
[6] | 钟秋萍,钟佳宏,余汇,程玉芳,汪海涛,徐江平*. 新型PDE4抑制剂FCPR16的抗抑郁作用及机制研究[J]. 神经药理学报, 2017, 7(3): 57-57. |
[7] | 王丽娜,龚其海,李菲,吴芹,石京山. 金钗石斛多糖减轻脂多糖诱导的大鼠学习记忆减退及机制研究[J]. 神经药理学报, 2016, 6(1): 1-8. |
[8] | 胡宝玲, 郭春燕. 芍药苷神经保护作用机制的研究进展[J]. 神经药理学报, 2015, 5(6): 51-56. |
[9] | 王小琴,邹玉安,郭春燕. 脑缺血预处理和脑缺血耐受机制的研究进展[J]. 神经药理学报, 2015, 5(2): 30-37. |
[10] | 王真真, 陈乃宏. 抑郁症与炎症[J]. 神经药理学报, 2013, 3(5): 27-37. |
[11] | 董栋,王蕊. 抑郁症相关受体、细胞因子及信号通路的研究进展[J]. 神经药理学报, 2012, 2(5): 24-30. |
[12] | 苑玉和,吴苗苗,胡金凤,陈乃宏. α-突触核蛋白抑制PC12细胞中BDNF的表达[J]. 神经药理学报, 2011, 1(4): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||