ACTA NEUROPHARMACOLOGICA ›› 2020, Vol. 10 ›› Issue (1): 54-64.DOI: 10.3969/j.issn.2095-1396.2020.01.011
WANG Shu-yuan,YANG Bao-xue
Online:
2020-02-26
Published:
2020-02-26
Contact:
杨宝学,男,博士生导师,中国药理学会常务理事、肾脏药理学专业委员会主委;Tel:+86-010-82825622,E-mail:baoxue@bjmu.edu.cn
About author:
王淑园,女,博士研究生;研究方向:药理学;Tel:+86-010-82805559,E-mail:shuyuan0127@outlook.com
Supported by:
WANG Shu-yuan, YANG Bao-xue. Pathogenesis of Diluted Hyponatremia and Therapeutic Strategy[J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 54-64.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2020.01.011
1. Henry D A. Hyponatremia[J]. Annals of Internal Medicine, 2015, 163(3): ITC1-ITC1. 2. Frederik H Verbrugge, Paul Steels, Lars Grieten, et al. Hyponatremia in acute decompensated heart failure: depletion versus dilution[J]. J Am Coll Cardiol, 2015, 65(5): 480-492. 3. Amine Benmassaoud, Suzanne C Freeman, Davide Roccarina, et al. Treatment for ascites in adults with decompensated liver cirrhosis: a network meta-analysis[J]. Cochrane Database Syst Rev, 2020, 1:CD013123. 4. D'Amico G, Pasta L, Morabito A, et al. Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients[J]. Aliment Pharmacol Ther, 2014, 39(10): 1180-1193. 5. Pere Gines, Monica Guevara. Hyponatremia in cirrhosis: pathogenesis, clinical significance, and management[J]. Hepatology, 2008, 48(3): 1002-1010. 6. Mark Sherlock, Eoin O'Sullivan, Amar Agha, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage[J]. Clin Endocrinol (Oxf), 2006, 64(3): 250-254. 7. Maria Carlota Londono, Monica Guevara, Antoni Rimola, et al. Hyponatremia impairs early posttransplantation outcome in patients with cirrhosis undergoing liver transplantation[J]. Gastroenterology, 2006, 130(4): 1135-1143. 8. Robert Schrier, Arroyo V, Mauro Bernardi, et al. Peripheral arterial vasodilation hypothesis: A proposal for the initiation of renal sodium and water retention in cirrhosis[J]. Hepatology, 1988, 8(5): 1151-1157. 9. Laura Turco, Guadalupe Garcia-Tsao. Portal hypertension: pathogenesis and diagnosis[J]. Clin Liver Dis, 2019, 23(4): 573-587. 10. Piano S, Tonon M, Angeli P. Management of ascites and hepatorenal syndrome[J]. Hepatol Int, 2018, 12(Suppl 1):122-134. 11. Adebayo D, Neong S F, Wong F. Ascites and hepatorenal syndrome[J]. Clin Liver Dis, 2019, 23(4): 659-682. 12. Florian Lang, Christoph Bohmer, Monica Palmada, et al. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms[J]. Physiol Rev, 2006, 86(4): 1151-1178. 13. David Pearce, Rama Soundararajan, Christiane Trimpert, et al. Collecting duct principal cell transport processes and their regulation[J]. Clin J Am Soc Nephrol, 2015, 10(1): 135-146. 14. Juan Pablo Arroyo, Dagmara Lagnaz, Caroline Ronzaud, et al. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway[J]. J Am Soc Nephrol, 2011, 22(9): 1707-1719. 15. DuVall M D, Zhu Sheng-he, Fuller C M, et al. Peroxynitrite inhibits amiloride-sensitive Na+ currents inXenopus oocytes expressing αβγ-rENaC[J]. American J Physiology-Cell Physiology, 1998, 274(5): C1417-C1423. 16. My N Helms, Yu Ling, Bela Malik, et al. Role of SGK1 in nitric oxide inhibition of ENaC in Na+-transporting epithelia[J]. Am J Physiol Cell Physiol, 2005, 289(3): C717-726. 17. Yang Lei, Gustavo Frindt, Florian Lang, et al. SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone[J]. Am J Physiol Renal Physiol, 2017, 312(1): F65-F76. 18. Al-Qusairi Lama, Basquin Denis, Roy Ankita, et al. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC[J]. Am J Physiol Renal Physiol, 2016, 311(2): F330-342. 19. Fenja Knoepp, Zoe Ashley, Daniel Barth, et al. Shear force sensing of epithelial Na(+) channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of alphaENaC[J]. Proc Natl Acad Sci U S A, 2020, 117(1): 717-726. 20. Verney E B. Absorption and excretion of water the antidiuretic hormone[J]. The Lancet, 1946, 248(6430): 739-744. 21. Antoni F A. Vasopressin as a stress hormone[M]. Stress: Neuroendocrinology and Neurobiology, 2017: 97-108. 22. Eric Féraille, Alain Doucet. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control [J]. Physiological Reviews, 2001, 81(1): 345-418. 23. Detlef Bockenhauer, Daniel-G Bichet. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus[J]. Nat Rev Nephrol, 2015, 11(10): 576-588. 24. Saif A Muhsin, David Mount. Diagnosis and treatment of hypernatremia[J]. Best Pract Res Clin Endocrinol Metab, 2016, 30(2): 189-203. 25. Tanja Vukicevic, Maike Schulz, Dorte Faust, et al. The trafficking of the water channel Aquaporin-2 in renal principal cells-a potential target for pharmacological intervention in cardiovascular diseases [J]. Front Pharmacol, 2016, 7(62): 23. 26. Wang W-L, Su S-H, Wong K Y, et al. Rab7 involves Vps35 to mediate AQP2 sorting and apical trafficking in the collecting duct cells[J]. American J Physiology-Renal Physiology, 2020. 27. Enno Klussmann, Grazia Tamma, Dorothea Lorenz, et al. An inhibitory role of Rho in the vasopressin-mediated translocation of Aquaporin-2 into cell membranes of renal principal cells [J]. J Biological Chemistry, 2001, 276(23): 20451-20457. 28. Katharina Schrade, Jessica Tröger, Adeeb Eldahshan, et al. An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells[J]. PLOS ONE, 2018, 13(1): e0191423. 29. Tanja Vukicevic, Christian Hinze, Sandrine Baltzer, et al. Fluconazole increases osmotic water transport in renal collecting duct through effects on Aquaporin-2 trafficking [J]. J Am Soc Nephrol, 2019, 30(5): 795-810. 30. Luo Ren-fei, Hu Shan, Liu Qiao-juan, et al. Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration[J]. FASEB J, 2019, 33(1): 469-483. 31. Fumiaki Ando, Eisei Sohara, Tetsuji Morimoto, et al. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway[J]. Nat Commun, 2016, 7: 13636. 32. Birnbaumer M. Vasopressin receptors[J]. Trends in Endocrinology & Metabolism, 2000, 11(10): 406-410. 33. Lise Bankir, Daniel-G Bichet, Nils G Morgenthaler. Vasopressin: physiology, assessment and osmosensation[J]. J Intern Med, 2017, 282(4): 284-297. 34. Eric Feraille, Eva Dizin. Coordinated control of ENaC and Na+, K+-ATPase in renal collecting duct[J]. J Am Soc Nephrol, 2016, 27(9): 2554-2563. 35. Ishibashi K, Sasaki S, Fushimi K, et al. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts[J]. Am J Physiol, 1997, 272(2 Pt 2): F235-241. 36. Soo Wan Kim, Veronika Gresz, Aleksandra Rojek, et al. Decreased expression of AQP2 and AQP4 water channels and Na,K-ATPase in kidney collecting duct in AQP3 null mice[J]. Biol Cell, 2005, 97(10): 765-778. 37. Marika Rudler, Maxime Mallet, Pilippe Sultanik, et al. Optimal management of ascites[J]. Liver Int, 2020, 40 (Suppl 1):128-135. 38. Chinese Society of Hepatology, Chinese Medical Association, Xu Xiao-yuan, et al. Chinese guidelines on the management of ascites and its related complications in cirrhosis[J]. Hepatol Int, 2019, 13(1): 1-21. 39. Rossana Berardi, Candida Mastroianni, Giuseppe Lo Russo, et al. Syndrome of inappropriate anti-diuretic hormone secretion in cancer patients: results of the first multicenter Italian study[J]. Ther Adv Med Oncol, 2019, 11:1758835919877725. 40. Reem A Mustafa, Alan S L Yu. Burden of Proof for Tolvaptan in ADPKD: Did REPRISE Provide the Answer?[J]. Clin J Am Soc Nephrol, 2018, 13(7):1107-1109. 41. Annarita Di Mise, Maria Venneri, Marianna Ranieri, et al. Lixivaptan, a new generation diuretic, counteracts vasopressin-induced aquaporin-2 trafficking and function in renal collecting duct cells [J]. Int J Mol Sci, 2019, 21(1). 42. Elsa Sola, Cristina Sole, Macarena Simon-Talero, et al. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation. A randomized placebo-controlled trial[J]. J Hepatol, 2018, 69(6): 1250-1259. 43. Paolo Caraceni, Oliviero Riggio, Paolo Angeli, et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial[J]. The Lancet, 2018, 391(10138): 2417-2429. 44. Cary H Paine, Raimund H Pichler. Treatment of hyponatremia in end-stage liver disease: new tools in the shed [J]. Am J Gastroenterol, 2018, 113(11):1728-1729. 45. Mauro Bernardi, Paolo Caraceni, Roberta J Navickis, et al. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials[J]. Hepatology, 2012, 55(4): 1172-1181. 46. Rezwan Ahmed, Prasanna Santhanam, Yaser Rayyan. MELD-Na as a prognostic indicator of 30- and 90-day mortality in patients with end-stage liver disease after creation of transjugular intrahepatic portosystemic shunt[J]. Eur J Gastroenterol Hepatol, 2015, 27(10): 1226-1227. 47. Bryan Oronsky, Scott Caroen, Arnold Oronsky, et al. Electrolyte disorders with platinum-based chemotherapy: mechanisms, manifestations and management[J]. Cancer Chemotherapy and Pharmacology, 2017, 80(5): 895-907. 48. San-E Ishikawa. Is exaggerated release of arginine vasopressin an endocrine disorder? Pathophysiology and treatment [J]. J Clin Med, 2017, 6(11): 102. 49. N Winn Seay, Ruediger W Lehrich, Arthur Greenberg. Diagnosis and management of disorders of body tonicity-hyponatremia and hypernatremia: core curriculum 2020 [J]. Am J Kidney Dis, 2020, 75(2): 272-286. 50. Mirjam Christ-Crain. Vasopressin and Copeptin in health and disease[J]. Rev Endocr Metab Disord, 2019, 20(3): 283-294. 51. Yamashita T, Yoshida M, Yamada H, et al. Prompt efficacy of tolvaptan in treating hyponatremia of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) closely associated with rupture of a gastric artery aneurysm[J]. Intern Med, 2014, 53(8): 845-849. 52. Zhao Ning, Stephanie O Peacock, Chen Hao Lo, et al. Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer[J]. Science Translational Medicine, 2019, 11(498): eaaw4636. 53. Taka-Aki Koshimizu, Aki Kashiwazaki, Junichi Taniguchi. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors[J]. Sci Rep, 2016, 6: 25327. 54. Kozo Hamada, Katsuhiko Mikoshiba. IP3 receptor plasticity underlying diverse functions [J]. Annu Rev Physiol, 2020, 82(1): 151-176. 55. Andrea Kleindienst, Mark J Hannon, Michael Buchfelder, et al. Hyponatremia in neurotrauma: the role of vasopressin [J]. J Neurotrauma, 2016, 33(7): 615-624. 56. Kazuaki Nakamura, Gilberto Velho, Nadine Bouby. Vasopressin and metabolic disorders: translation from experimental models to clinical use[J]. J Intern Med, 2017, 282(4): 298-309. 57. Lynnette R Montgomery, Charles H Hubscher. Altered vasopressin and natriuretic peptide levels in a rat model of spinal cord injury: implications for the development of polyuria[J]. Am J Physiol Renal Physiol, 2018, 314(1): F58-F66. 58. Liu Chao, Chen Ying, Kang Yun-xiao, et al. Glucocorticoids improve renal responsiveness to atrial natriuretic peptide by up-regulating natriuretic peptide receptor-A expression in the renal inner medullary collecting duct in decompensated heart failure[J]. J Pharmacol Exp Ther, 2011, 339(1): 203-209. 59. Deborah P Jones. Syndrome of Inappropriate Secretion of Antidiuretic Hormone and Hyponatremia[J]. Pediatrics in Review, 2018, 39(1):27-35. 60. Paul Grant, John Ayuk, Pierre-Marc Bouloux, et al. The diagnosis and management of inpatient hyponatraemia and SIADH[J]. Eur J Clin Invest, 2015, 45(8): 888-894. 61. Guy Decaux, Fabrice Gankam Kengne, Couturier B, et al. Actual therapeutic indication of an old drug: urea for treatment of severely symptomatic and mild chronic hyponatremia related to SIADH[J]. J Clin Med, 2014, 3(3): 1043-1049. 62. Helbert Rondon-Berrios, Srijan Tandukar, Mor Maria K, et al. Urea for the treatment of hyponatremia[J]. Clin J Am Soc Nephrol, 2018, 13(11): 1627-1632. 63. Alain Soupart, Michel Coffernils, Couturier B, et al. Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH[J]. Clin J Am Soc Nephrol, 2012, 7(5): 742-747. 64. Andrew P Ambrosy, Gregg C Fonarow, Javed Butler, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries[J]. J Am Coll Cardiol, 2014, 63(12):1123-1133. 65. Zhang Ying-ying, Johann Bauersachs, Harald F Langer. Immune mechanisms in heart failure[J]. Eur J Heart Fail, 2017, 19(11): 1379-1389. 66. Leonardo De Luca, Liviu Klein, James E Udelson, et al. Hyponatremia in patients with heart failure[J]. Am J Cardiol, 2005, 96(12A): 19L-23L. 67. Luigi Adamo, Cibele Rocha-Resende, Sumanth D Prabhu, et al. Reappraising the role of inflammation in heart failure[J]. Nat Rev Cardiol, 2020, 17: 269-285. 68. Yamashita Tomoya, Hayashi T, Yoshida N, et al. Gut microbial dysbiosis in heart failure- is it a future therapeutic target or not?[J]. Circ J, 2018, 82(6): 1507-1509. 69. Mark Luedde, Thorben Winkler, Femke-Anouska Heinsen, et al. Heart failure is associated with depletion of core intestinal microbiota[J]. ESC Heart Fail, 2017, 4(3): 282-290. 70. Takehiro Kamo, Hiroshi Akazawa, Wataru Suda, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure[J]. PLoS One, 2017,12(3): e0174099. 71. Robert W Schrier. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone[J]. Am J Med, 2006, 119(7 Suppl 1): S47-53. 72. Steven R Goldsmith, Mihai Gheorghiade. Vasopressin antagonism in heart failure[J]. J Am Coll Cardiol, 2005, 46(10): 1785-1791. 73. Caterina Urso, Salvatore Brucculeri, Gregorio Caimi. Acid-base and electrolyte abnormalities in heart failure: pathophysiology and implications[J]. Heart Fail Rev, 2015, 20(4): 493-503. 74. Christophe Heymes, Jennifer K Bendall, Philippe Ratajczak, et al. Increased myocardial NADPH oxidase activity in human heart failure[J]. J Am Coll Cardiol, 2003, 41(12): 2164-2171. 75. De Vecchis R, Esposito C, Ariano C, et al. Hypertonic saline plus i.v. furosemide improve renal safety profile and clinical outcomes in acute decompensated heart failure: A meta-analysis of the literature[J]. Herz, 2015, 40(3): 423-435. 76. Renato De Vecchis, Claudio Cantatrione, Damiana Mazzei, et al. Vasopressin receptor antagonists for the correction of hyponatremia in chronic heart failure: an underutilized therapeutic option in current clinical practice?[J]. J Clin Med, 2016, 5(10):86. 77. Thomas A Zelniker, Eugene Braunwald. Clinical benefit of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review [J]. J Am Coll Cardiol, 2020, 75(4):435-447. 78. Austin Hsu, Duan Qi-ming, Sarah McMahon, et al. Salt-inducible kinase 1 maintains HDAC7 stability to promote pathologic cardiac remodeling[J]. J Clin Invest, 2020, 130(18), 10.1172/JCI133753. 79. Takuro Numaga-Tomita, Motohiro Nishida. TRPC channels in cardiac plasticity[J]. Cells, 2020, 9(2), DOI: 10.3390/cells9020454. 80. Steven R Goldsmith, James E Udelson, Mihai Gheorghiade. Dual vasopressin V1a/V2 antagonism: the next step in neurohormonal modulation in patients with heart failure?[J]. J Card Fail, 2018, 24(2): 112-114. 81. Nathan A Pinner, Carrie Oliphant, Jack P Hopkins. Use of conivaptan for the treatment of symptomatic hyponatremia in a patient with acute decompensated heart failure[J]. Am J Health Syst Pharm, 2010, 67(12): 1011-1015. 82. Robert A Fenton, Anneliese Flynn, Adetola Shodeinde, et al. Renal phenotype of UT-A urea transporter knockout mice[J]. J Am Soc Nephrol, 2005, 16(6): 1583-1592. 83. Jiang Tao, Li Ying-jie, Antia T Layton, et al. Generation and phenotypic analysis of mice lacking all urea transporters[J]. Kidney Int, 2017, 91(2): 338-351. 84. Ren Hui-wen, Wang Yan-hua, Xing Yong-ning, et al. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters[J]. Am J Physiol Renal Physiol, 2014, 307(12): F1363-1372. 85. Li Min, Zhao Yan, Zhang Shun, et al. A thienopyridine, CB-20, exerts diuretic activity by inhibiting urea transporters[J]. Acta Pharmacol Sin, 2020, 41(1): 65-72. 86. Marc O Anderson, Zhang Ji-cheng, Liu Yan, et al. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B[J]. J Med Chem, 2012, 55(12): 5942-5950. 87. Lee Su-jin, Onur Cil, Elena Diez-Cecilia, et al. Nanomolar-potency 1,2,4-triazoloquinoxaline inhibitors of the kidney urea transporter UT-A1[J]. J Med Chem, 2018, 61(7): 3209-3217. 88. Onur Cil, Cristina Esteva-Font, Sadik Taskin Tas, et al. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats[J]. Kidney Int, 2015, 88(2): 311-320. |
[1] | YUE Zhong-bao, YOU Jia,LI Zhuo-ming,CHEN Shao-rui,LIU Pei-qing. SIRT3: A Potential Target for CHF? [J]. Acta Neuropharmacologica, 2018, 8(5): 80-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||