Acta Neuropharmacologica ›› 2016, Vol. 6 ›› Issue (1): 35-40.DOI: 10.3969/j.issn.2095-1396.2016.01.005
Previous Articles Next Articles
ZHANG Mei-jin,WANG Sha-sha,ZHANG Zhao,CHEN Nai-hong,HU Jin-feng
Online:
2016-02-26
Published:
2016-05-10
Contact:
胡金凤,副研究员,硕士生导师;研究方向:神经精神药理学;E-mail:hujinfeng@imm.ac.cn
About author:
张美金,硕士研究生;研究方向:神经精神药理学;E-mail:zhangmeijin@imm.ac.cn
Supported by:
国家自然科学基金项目(No.81274122、No.81373997、No.81273629、No.81473376、No.U1402221、No.81573640),北京市自然科学基金项目(No.7131013),新药作用机制研究与药效评价北京市重点实验室资助项目(No.BZ0150)
CLC Number:
ZHANG Mei-jin,WANG Sha-sha,ZHANG Zhao,CHEN Nai-hong,HU Jin-feng. Role of Nuclear Transcription Factor Nrf2 in Parkinson’s Disease[J]. Acta Neuropharmacologica, 2016, 6(1): 35-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2016.01.005
[1] David T Dexter, Peter Jenner. Parkinson disease: from pathology to molecular disease mechanisms[J]Free Radical Biology & Medicine, 2013, 62: 132-144.[2] Denis Ottolini, Tito Cali, Alessandro Negro, et al. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering[J].Human Molecular Genetics, 2013, 22(11): 2152-2168.[3] Hans-Hermann Hoepken, Suzana Gispert, Mekhman Azizov, et al. Parkinson patient fibroblasts show increased alpha-synuclein expression[J].Experimental Neurology, 2008, 212(2): 307-313.[4] Filio Billia, Ludger Hauck, Daniela Grothe, et al. Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo[J].Proceedings National Academy Sciences USA, 2013, 110(15): 6085-6090.[5] Antonio Cuadrado, Paz Moreno-Murciano, Jose Pedraza-Chaverri. The transcription factor Nrf2 as a new therapeutic target in Parkinson's disease[J].Expert Opinion Therapeutic Targets, 2009, 13(3): 319-329.[6] Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region[J]. Proceedings National Academy Sciences USA, 1994, 91(21): 9926-9930.[7] Yu Xiang, Thomas Kensler. Nrf2 as a target for cancer chemoprevention[J]. Mutation Res, 2005, 591(1-2):93-102.[8] Lv E, Deng J, Yu Y, et al. Nrf2-ARE signals mediated the anti-oxidative action of electroacupuncture in an MPTP mouse model of Parkinson's disease[J]. Free Radical Res, 2015, 49(11): 1296-1307.[9] Gerasimos P Sykiotis, Dirk Bohmann. Stress-activated cap'n'collar transcription factors in aging and human disease[J]. Science Signaling, 2010, 3(112): re3.[10] Yaeko Takagi, Makoto Kobayashi, Li Li, et al. MafT, a new member of the small Maf protein family in zebrafish[J]. Biochemical Biophysical Research Communications, 2004, 320(1): 62-69.[11] Wang Bing, Liu Qing-qing, Shan Hong-yun, et al. Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to alpha-synuclein in Drosophila[J]. Biochemistry Cell Biology, 2015, 93(4): 351-358.[12] Gui Ya-xing, Zhang Li-shan, Lv Wen, et al. NFE2L2 variations reduce antioxidant response in patients with Parkinson disease[J]. Oncotarget, 2016, 7(10): 10756-10764.[13] Marcelo R Vargas, Jeffrey A Johnson. The Nrf2-ARE cytoprotective pathway in astrocytes[J]. Expert Reviews Molecular Medicine, 2009, 11: e17.[14] Jamie Gonzalez, Nicolas Valls, Roberto Brito, et al. Essential hypertension and oxidative stress: New insights[J]. J World Cardiology, 2014, 6(6): 353-366.[15] Patricia M Chege, Gawain McColl. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease[J]. Frontiers Aging Neuroscience, 2014, 6: 89.[16] Justin Davis, Steven Moylan, Brian H Harvey, et al. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries[J]. J Australian New Zealand Psychiatry, 2014, 48(6): 512-529.[17] Helga E de Vries, Maarten Witte, David Hondius, et al. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?[J].Free Radical Biology & Medicine, 2008, 45(10): 1375-1383.[18] Gururaj Joshi, Jeffrey A Johnson. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases[J]. Recent Patents CNS Drug Discovery, 2012, 7(3):218-229.[19] Jong-Min Lee, Andy Y Shih, Timothy H Murphy, et al. NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons[J]. J Biological Chemistry, 2003, 278(39): 37948-37956.[20] Izaskun Buendia, Patrycja Michalska, Elisa Navarro, et al. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases[J]. Pharmacology & Therapeutics, 2016, 157: 84-104.[21] Sankar Surendran, Srinivasagam Raja Sankar. Parkinson's disease: oxidative stress and therapeutic approaches[J]. Neurol Sci, 2010, 31(5): 531-540.[22] Chenere P Ramsey, Charles A Glass, Marshall B Montgomery, et al. Expression of Nrf2 in neurodegenerative diseases[J]. J Neuropathol Exp Neurol, 2007, 66(1): 75-85.[23] Ali Samii, John Nutt, Bruce R Ransom. Parkinson's disease[J]. Lancet, 2004, 363(9423): 1783-1793.[24] Suzanne Lesage, Alexis Brice. Parkinson's disease: from monogenic forms to genetic susceptibility factors[J]. Human Molecular Gen, 2009, 18(R1): R48-59.[25] John N Caviness, LihFen Lue, Charles H Adler, et al. Parkinson's disease dementia and potential therapeutic strategies[J]. CNS Neuroscience & Therapeutics, 2011, 17(1): 32-44.[26] Radhika Sampat, Sarah Young, Ami Rosen, et al. Potential mechanisms for low uric acid in Parkinson disease[J]. J Neural Transm, 2016, 123(4): 365-370.[27] Delinda A Johnson, Jeffrey A Johnson. Nrf2-a therapeutic target for the treatment of neurodegenerative diseases[J]. Free Radical Biology & Medicine, 2015, 88(Pt B): 253-267.[28] Brent J Ryan, Lara L Lourenco-Venda, Mark J Crabtree, et al. alpha-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease[J]. Free Radical Biology & Medicine, 2014, 67: 58-68.[29] Gan Li, Jeffrey A Johnson. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases[J]. Biochimica et Biophysica Acta, 2014, 1842(8): 1208-1218.[30] He Qing, Song Ning, Jia Feng-jv, et al. Role of alpha-synuclein aggregation and the nuclear factor E2-related factor 2/heme oxygenase-1 pathway in iron-induced neurotoxicity[J]. J Int Biochemistry & Cell Biology, 2013, 45(6): 1019-1030.[31] Li Gan, Marcelo R Vargas, Delinda A Johnson, et al. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model[J]. J Neuroscience, 2012, 32(49): 17775-17787.[32] Lin Xiang-min, Travis J Cook, Cyrus P Zabetian, et al. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease[J]. Scientific Reports, 2012, 2(50): 954.[33] Casey M Clements, Richard S McNally, Brian J Conti, et al. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2[J]. Proceedings National Academy of Sciences USA, 2006, 103(41): 15091-15096.[34] Zhou Wen-bo, Curt R Freed. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity[J]. J Biological Chemistry, 2005, 280(52): 43150-43158.[35] Ana I Rojo, Nadia G Innamorato, Ana M Martin-Moreno, et al. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease[J].Glia, 2010, 58(5): 588-598.[36] Rebekah J Jakel, Jessica A Townsend, Andrew D Kraft, et al. Nrf2-mediated protection against 6-hydroxydopamine[J]. Brain Res, 2007, 1144: 192-201.[37] Agnieszka Jazwa, Ana I Rojo, Nadia G Innamorato, et al. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism[J].Antioxidants & Redox Signaling, 2011, 14(12): 2347-2360.[38] Wruck C J, Claussen M, Fuhrmann G, et al. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway[J]. J Neural Transm Suppl, 2007, (72): 57-67.[39] Zhao Chun-yang, Wang Xiao-liang, Peng Ying. [Role of Nrf2 in neurodegenerative diseases and recent progress of its activators][J]. Acta Pharmaceutica Sinica, 2015, 50(4): 375-384.[40] Susanne Petri, Sonja Korner, Mahmoud Kiaei. Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS[J].Neurology Res Int, 2012, 2012: 878030.[41] Tracy P Williamson, Delinda A Johnson, Jeffrey A Johnson. Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity[J].Neurotoxicology, 2012, 33(3): 272-279.[42] Chen Pei-chun, Marcelo R Vargas, Amar K Pani, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: Critical role for the astrocyte[J].Proceed National Academy of Sciences USA, 2009, 106(8): 2933-2938.[43] Hyman M Schipper. Heme oxygenase expression in human central nervous system disorders[J].Free Radical Biology Med, 2004, 37(12):1995-2011.[44] Andy Y Shih, Delinda A Johnson, Gloria Wong, et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress[J]. J Neuroscience, 2003, 23(8):3394-3406.[45] Xiao Hai-bing, Lv Feng, Xu Wu-ping, et al. Deprenyl prevents MPP(+)-induced oxidative damage in PC12 cells by the upregulation of Nrf2-mediated NQO1 expression through the activation of PI3K/Akt and Erk[J].Toxicology, 2011, 290(2-3): 286-294. |
[1] | LIN Si-mei, ZHOU Hong, YANG Bao-xue. The Relationship between Hyperuricemia and Chronic Kidney Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 55-64. |
[2] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[3] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[4] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[5] | YU Li-li1,2,XU Li1,WANG Yi-nuo1,XUE Lu-ning1,Gou Ji-wei1,LI Hong-bo1,HOU Xue-qin1*,ZHANG Han-ting1*. Effects of Osthole on Learning and Memory and the Estrogen Pathway in Ovariectomized Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 7-8. |
[6] | WANG Hao1, ZHANG Fang-fang1, FU Hua-rong1, ZHOU Yan-meng1, LIU Xin1, HOU Xue-qin 1, HU Wei2, Rolf Hansen2, XU Ying3, James O’Donnell3, ZHANG Han-ting1,2. Targeting PDE4 for Alzheimer’s Disease and Alcoholism: An implication in Alcohol-Related Dementia? [J]. Acta Neuropharmacologica, 2018, 8(4): 39-41. |
[7] | YANG Wen-zhong1, ZHOU Xue-yan1, MA Tao1,2,3*. Impaired mRNA Translational Capacity is Correlated with Aging-Dependent Memory Deficits and Behavioral Inflexibility [J]. Acta Neuropharmacologica, 2018, 8(4): 50-52. |
[8] | WANG Jia-Yue,DUAN Yan-Hong,Wang Xin-He,Zhang Xu-Liang,Xu Mei-Chen, Cao Xiao-Hua *. The Effect of PHA-543613 on Memory Disorders in Presenilin1 and Presenilin2 Conditional Double Knockout Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 52-53. |
[9] | ZHONG Jia-hong, WANG Hai-tao, XU Jiang-ping. Inhibition of Phosphodiesterase 4 by FCPR16 Protects SH-SY5Y Cells against MPP+-Induced Cell Death through Activating cAMP/PKA/CREB and Epac/Akt Signaling Pathways [J]. Acta Neuropharmacologica, 2018, 8(4): 54-55. |
[10] | BAI Ru-bing,ZHANG Zhong-quan,CEN Juan. The Expression of P-Glycoprotein in Neurons and the Effect of Oxidative Stress on P-Glycoprotein [J]. Acta Neuropharmacologica, 2018, 8(3): 9-. |
[11] | LIN Zhi-bin. Pharmacological Progress of Ganoderma on Anti-aging and Anti-Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(1): 9-15. |
[12] | LIU Nuo,WANG Zhen-zhen,CHEN Nai-hong. The Role of Gut Flora in the Pathogenesis of Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(5): 28-. |
[13] | GAO Zhi-hong1,ZUO Ya-qi2,ZHANG Xiao-li1. A New Idea of Astragaloside-Induced Bone Marrow Mesenchymal Stem Cells in the Treatment of Parkinson’s Disease [J]. Acta Neuropharmacologica, 2017, 7(5): 39-44. |
[14] | REN Jing,ZHANG Dan-shen. Research Progress of Curcumin in the Treatment of Nervous System Diseases [J]. Acta Neuropharmacologica, 2017, 7(5): 45-51. |
[15] | HOU Wen-shu,ZHANG Li. Research Progress on Therapeutic Target of Effective Ingredients of Traditional Chinese Medicine in Treating Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2017, 7(5): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||