Acta Neuropharmacologica ›› 2012, Vol. 2 ›› Issue (4): 19-27.
Previous Articles Next Articles
HU Jun, LEI Fan, XING Dong-ming, DU Li-jun
Online:
2012-08-26
Published:
2014-06-27
Contact:
杜力军,男,博士,教授,博士生导师;研究方向:分子药理学;E-mail:lijundu@mail.tsinghua.edu.cn
About author:
胡珺,男,博士研究生;研究方向:生物化学与分子生物学;E-mail:hujun06@mails.tsinghua.edu.cn
Supported by:
国家自然科学基金项目(No.81374006,No.81073092),“ 重大新药创制”科技重大专项项目(No.2012ZX09103-201-041,No.2012ZX09102-201-008,No.2011ZX09101-002-11)。
CLC Number:
HU Jun, LEI Fan, XING Dong-ming, DU Li-jun. Akt Signaling Pathway and Ischemic Stroke[J]. Acta Neuropharmacologica, 2012, 2(4): 19-27.
[1] Stephen P Staal, Janet W Hartley, Wallace P Rowe. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma[J]. Proc Natl Acad Sci USA, 1977, 74(7): 3065-3067.[2] A Bellacosa, T F Franke, M E Gonzalezportal, et al. Structure, expression and chromosomal mapping of C-Akt-relationship to V-Akt and its implications[J]. Oncogene, 1993, 8(3): 745-754.[3] Lana Bozulic, Brian A Hemmings. PIKKing on PKB: regulation of PKB activity by phosphorylation[J]. Curr Opin Cell Biol, 2009, 21(2): 256-261.[4] Marie Vandromme, Anne Rochat, Roger Meier, et al. Protein kinase B beta/Akt2 plays a specific role in muscle differentiation[J]. J Biol Chem, 2001, 276 (11): 8173-8179.[5] Annapurna Poduri, Gilad D Evrony, Xuyu Cai, et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations[J]. Neuron, 2012, 74 (1): 41-48.[6] Alex Toker, Alexandra C Newton. Cellular signaling: Pivoting around PDK-1[J]. Cell, 2000, 103(2): 185-188.[7] Tung Jai-nien, Tsao Tang-yi, Chen Shun-liang, et al. Presence of secretory cellular apoptosis susceptibility protein in cerebrospinal fluids of patients with intracerebral hemorrhage caused by stroke and neurotrauma[J]. Neuroendocrinol Lett, 2010, 31(3): 390-398.[8] X J Shu, W Liu, H Y Zhou, et al. Synergistic cognition-protective effects of bis(7)-tacrine inducing neurogenesis and inhibiting apoptosis in aged rats with acute ischemic Stroke[J]. Cerebrovasc Dis, 2010, 30(2): 213-214.[9] B Liebelt, P Papapetrou, A Ali, et al. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (Heat Shock Protein-72) and extracellular-signal-regulated-kinase 1/2[J]. Neuroscience, 2010, 166(4): 1091-1100.[10] Ning Ke, Pei Lin, Liao Ming-xia, et al. Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN[J]. J Neurosci, 2004, 24(16):4052-4060.[11] Neil R Sims, Hakan Muyderman. Mitochondria, oxidative metabolism and cell death in stroke[J]. Biochimica et Biophysica Acta, 2010, 1802 (1): 80-91.[12] Zhao Heng, Midori A Yenari, Cheng Dan-ye, et al. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat[J]. J Cereb Blood Flow Metab, 2004, 24(6): 681-692.[13] Armelle A Troussard, Paul C McDonald, Elizabeth D Wederell, et al. Preferential dependence of breast cancer cells versus normal cells on integrin-linked kinase for protein kinase B/Akt activation and cell survival[J]. Cancer Res, 2006, 66(1): 393-403.[14] Marco Falasca. PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs[J]. Curr Pharm Des, 2010, 16(12): 1410-1416.[15] Gernot Hahne, Tom N. Grossmann. Direct targeting of b-catenin: Inhibition of protein–protein interactions for the inactivation of Wnt signaling[J]. Bioorg Medicin Chem, 2013, 21 (14): 4020- 4026.[16] Koji Osuka, Yasuo Watanabe, Nobuteru Usuda, et al. Modification of endothelial NO synthase through protein phosphorylation after forebrain cerebral ischemia/reperfusion[J]. Stroke, 2004, 35(11): 2582-2586.[17] Miho Nakano, Kenichi Osada, Atsushi Misonoo, et al. Fluvoxamine and sigma-1 receptor agonists dehydroepiandrosterone (DHEA)-sulfate induces the Ser473- phosphorylation of Akt-1 in PC12 cells[J]. Life Sci, 2010, 86 (9-10): 309-314.[18] Zhao Heng, Robert M Sapolsky, Gary K Steinberg. Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke[J]. Mol Neurobiol, 2006, 34(3): 249-269.[19] Barbara Zablocka, Joanna Duzniewska, Halina Zajac, et al. Opposite reaction of ERK and JNK in ischemia vulnerable and resistant regions of hippocampus: involvement of mitochondria[J]. Mol Brain Res, 2003, 110(2): 245-252.[20] Tetsuyuki Yoshimoto, Hiroyuki Uchino, Qing P He, et al. Cyclosporin A, but not FK506, prevents the downregulation of phosphorylated Akt after transient focal ischemia in the rat[J]. Brain Res, 2001, 899(1-2): 148-158.[21] M Gao, J Liang, Y Lu, et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation[J]. Oncogene, 2013; doi: 10.1038/ onc. 2013.2.[22] Chih-Hao Su, Cheng-Yi Wang, Keng-Hsin Lan, et al. Akt phosphorylation at Thr308 and Ser473 is required for CHIP-mediated ubiquitination of the kinase[J]. Cellular Signalling, 2011, 23(11): 1824-1830.[23] Hisashi Kitagawa, Hitoshi Warita, Chihoko Sasaki, et al. Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain[J]. Neurosci Lett, 1999, 274(1): 45-48.[24] Hu Jun, Chai Yu-shuang, Wang Yu-gang, et al. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia–reperfusion[J]. Eur J Pharmacol, 2012, 674 (2-3): 132-142.[25] Chai Yu-shuang, Hu Jun, Lei Fan, et al. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt[J]. Eur J Pharmacol, 2013, 708(1-3): 44-55.[26] K L Jin, X O Mao, T Nagayama, et al. Induction of vascular endothelial growth factor receptors and phosphatidylinositol 3'-kinase/Akt signaling by global cerebral ischemia in the rat[J]. Neuroscience, 2000, 100(4): 713-717.[27] Wei Cui, Li Wen-ming, Han Ren-wen, et al. PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis[J]. Neurochem Intern, 2011, 59(6): 945- 953.[28] Christophc Bonny, Tiziana Borsello, Azel Zine. Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases[J]. Rev Neurosci, 2005, 16(1): 57-67.[29] Qi Da-shi, Liu Hong-zhi, Niu Jian, et al. Heat shock protein 72 inhibits c-Jun N-terminal kinase 3 signaling pathway via Akt1 during cerebral ischemia[J]. J Neurol Sci, 2012, 317(1-2): 123-129.[30] Charleen T Chu, David J Levinthal, Scott M Kulich, et al. Oxidative neuronal injury - The dark side of ERK1/2[J]. Eur J Biochem, 2004, 271(11): 2060-2066.[31] N Omori, G Jin, F Li, et al. Enhanced phosphorylation of PTEN in rat brain after transient middle cerebral artery occlusion[J]. Brain Res, 2002, 954(2): 317-322.[32] Alexey Goltsov, Dana Faratian, Simon P Langdon, et al. Compensatory effects in the PI3K/PTEN/ AKT signaling network following receptor tyrosine kinase inhibition [J]. Cellular Signalling, 2011, 23 (2): 407-416.[33] Takayuki Kawano, Motohiro Morioka, Shigetoshi Yano, et al. Decreased Akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus[J]. J Cereb Blood Flow Metab, 2002, 22(8): 926-934.[34] L S Ling, D Voskas, J R Woodgett. Activation of PDK-1 maintains mouse embryonic stem cell self-renewal in a PKB-dependent manner[J]. Oncogene, 2013, 32(3): 5397-5408.[35] Marjelo A Mines, Richard S Jope. Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice[J]. Cellular Signalling, 2012, 24(7): 1398-1405.[36] B Friguls, C Justicia, M Pallas, et al. Focal cerebral ischemia causes two temporal waves of Akt activation[J]. Neuroreport, 2001, 12(15): 3381- 3384.[37] Age Aleksander Skjevik, Mauro Mileni, Anne Baumann, et al. The N-Terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes[J]. J Mol Biol, 2014, 426(1): 150-168.[38] Atsushi Saito, Takeshi Hayashi, Shuzo Okuno, et al. Modulation of proline-rich Akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia[J]. Stroke, 2006, 37(2): 513-517.[39] Juan-Hua Quan, Guang-Ho Cha, Wei Zhou, et al. Involvement of PI3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis[J]. Exp Parasitol, 2013, 133(4): 462-471.[40] Xie Rong, Cheng Michelle, Li Mei, et al. Akt isoforms differentially protect against stroke-induced neuronal injury by regulating mTOR activities[J]. J Cereb Blood Flow Metab, 2013, 33 (12): 1875-1885. [41] Magda Guerra-Crespo, Andres Sistos, Darius Gleason, et al. Intranasal administration of PEGylated transforming growth factor-a improves behavioral deficits in a chronic stroke model[J]. J Stroke Cereb Diseases, 2010, 19(1): 3-9.[42] Lin-hui Ruan, Benson Wui-Man Lau, Jixian Wang, et al. Neurogenesis in neurological and psychiatric diseases and brain 3 injury: From bench to bedside[J]. Prog Neurobiol, 2013, http://dx.doi.org/10.1016/j. pneurobio.2013.12.006.[43] Katarina G Brywe, Carina Mallard, Malin Gustavsson, et al. IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3 beta[J]. Eur J Neurosci, 2005, 21(6): 1489-1502.[44] Luo You-gen, Yang Xi-fei, Zhao Shen-ting, et al. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons[J]. Neurochem Int, 2013, 63(8): 826- 831.[45] Pearl Chang, Elise Cheng, Brooke Shelia, et al. Marked differences in the efficacy of post-insult gene therapy with catalase versus glutathione peroxidase[J]. Brain Res, 2005, 1063(1): 27-31.[46] Yan Qiao, Qisen Xiang, Li Yuan, et al. Herbacetin induces apoptosis in HepG2 cells: Involvements of ROS and PI3K/Akt pathway[J]. Food Chem Toxicol, 2013, 51(1): 426-433.[47] Kilic U, Kilic E, Reiter RJ, et al. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice[J]. J Pineal Res, 2005, 38(1): 67-71.[48] R Mehra, M K Varshney, K Felszeghy, et al. An overview into the role of estrogen in hippocampal synaptic plasticity and neuroprotection[J]. Acta Physiol Hung, 2010, 97(1): 122-123.[49] Joachim G Elzer, Sajjad Muhammad, Tim M Wintermantel, et al. Neuronal estrogen receptor-alpha mediates neuroprotection by 17 beta-estradiol[J]. J Cereb Blood Flow Metab, 2010, 30(5): 935-942.[50] Melinda E Wilson, Liu Ying, Phyllis M Wise. Estradiol enhances Akt activation in cortical explant cultures following neuronal injury[J]. Mol Brain Res, 2002, 102(1-2): 48-54.[51] Chung Kil Won, Seung Jun Ha, Hae Sook Noh, et al. Estradiol prevents the injury-induced decrease of Akt activation and Bad phosphorylation[J]. Neurosci Lett, 2005, 387(2): 115-119.[52] Yeoung Cheul Choi, Jeong Hyun Lee, Ki Whan Hong, et al. 17 beta-estradiol prevents focal cerebral ischemic damages via activation of Akt and CREB in association with reduced PTEN phosphorylation in rats[J]. Fundam Clin Pharmacol, 2004, 18(5): 547-557.[53] Cheng-Hsing Kao, Chih-Zen Chang, Yu-Feng Su, et al. 17beta-Estradiol attenuates secondary injury through activation of Akt signaling via estrogen receptor alpha in rat brain following subarachnoid hemorrhage[J]. J Surg Res, 2013, 18 (1): e23- e30.[54] Ted Weita Lai, Shu Zhang, Yu Tian Wang. Excitotoxicity and stroke: Identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2013, Doi:10.1016/j. pneurobio. 2013.11. 006[55] Yu Hasegawa, Jun-Ichiro Hamada, Motohiro Morioka, et al. Neuroprotective effect of postischemic administration of sodium orthovanadate in rats with transient middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab, 2003, 23(9): 1040-1051.[56] Yasushi Takagi, Jun Harada, Alberto Chiarugi, et al. STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury[J]. J Cereb Blood Flow Metab, 2002, 22(11): 1311-1318.[57] Robert Meller, Susan L Stevens, Manabu Minami, et al. Neuroprotection by osteopontin in stroke[J]. J Cereb Blood Flow Metab, 2005, 25(2): 217-225.[58] Wang Ying-yi, Wei Yan, Lu Xiao-ming, et al. Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the avβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells[J]. Eur J Cell Biol, 2011, 90(8): 642-648.[59] Bozena Gabryel, Anna Pudelko, Andrizej Malecki. Erk1/2 and Akt kinases are involved in the protective effect of aniracetam in astrocytes subjected to simulated ischemia in vitro[J]. Eur J Pharmacol, 2004, 494(2-3): 111-120.[60] Seong Ho Koh, Younjoo Park, Chi Won Song, et al. The effect of PARP inhibitor on ischaemic cell death, its related inflammation and survival signals[J]. Eur J Neurosci, 2004, 20(6): 1461-1472.[61] Miao-Kun Sun, Daniel L Alkon. Pharmacology of protein kinase C activators: Cognition-enhancing and antidementic therapeutics[J]. Pharmacol Ther, 2010, 127(1): 66-77.[62] Lin Hung-wei, R Anthony DeFazio, D Della-Morte, et al. Derangements of post-ischemic cerebral blood flow by protein kinase C delta[J]. Neuroscience, 2010, 171(2): 566-576. |
[1] | ZHNAG Jia-lin,LI Yuan-yuan,YANG Wen-liang,LIU Fu-jia,TIAN Zi-xia,XIE Xin-mei,PANG Xiao-bin. Astragaloside IV Protect PC12 Cells under Stress Induced by Oxygen-Glucose Deprivation Involving PI3K/Akt/Bcl-2 Pathway [J]. Acta Neuropharmacologica, 2017, 7(5): 1-9. |
[2] | ZHANG Li-na,ZHANG Xin,XUE Juan,ZHANG Dan-shen. Advances Achievements of Traditional Chinese Medicine on the Signaling Pathways in Central Nervous Degenerative Diseases [J]. Acta Neuropharmacologica, 2017, 7(3): 33-42. |
[3] | ZHANG Shuai, XIA Cong-Yuan, ZHOU Heng, YANG Peng-Fei, CHEN Nai-Hong. Hyperglycemia in Acute Reperfusion Aggravates Cerebral Glucose Increase after Stroke [J]. Acta Neuropharmacologica, 2015, 5(4): 1-7. |
[4] | SONG Jin-yan, ZHANG Li, ZHAO Xiao-qian, SONG Zhi-bin. Effects of Chrysophanol Liposomes on Apoptosis of the Hippocampal Neurons in Mice after Cerebral Ischemia and Reperfusion Injury [J]. ACTA NEUROPHARMACOLOGICA, 2011, 1(2): 7-13. |
[5] | JIN Hui, LIU Li-Feng, LIANG Lei, DENG Wei-Ping, LIU Jian-Wen. Research on the block of cell cycle and apoptosis induction on glioma cell line U251 of a novel HDAC inhibitor named DWP0016 [J]. Acta Neuropharmacologica, 2011, 1(1): 38-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||