Acta Neuropharmacologica ›› 2018, Vol. 8 ›› Issue (1): 23-34.DOI: 10.3969/j.issn.2095-1396.2018.01.004
Previous Articles Next Articles
YANG Yan-fei,HUANG Zhi-li
Online:
2018-02-26
Published:
2018-06-04
Contact:
黄志力,男,博士生导师;研究方向:睡眠与失眠机制;E-mail:huangzl@fudan.edu.cn
About author:
杨燕飞,女,博士研究生;研究方向:睡眠与失眠机制;E-mail:17111010088@fudan.edu.cn
Supported by:
国家自然科学基金项目(No. 81420108015、31530035、31671099、31471064、31571103、31421091),国家重点基础研究发展计划
973 基金项目(No. 2015CB856401),上海市科委基金项目(No. 14JC1400900)
CLC Number:
YANG Yan-fei,HUANG Zhi-li. Recent Advance on Sleep-Wake Regulation Based on Novel Techniques for Specific Manipulations of Neuron Activities[J]. Acta Neuropharmacologica, 2018, 8(1): 23-34.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2018.01.004
[1] Huang Zhi-li, Yoshihiro Urade, Osamu Hayaishi. The role of adenosine in the regulation of sleep[J]. Current Topics in Medicinal Chemistry, 2011, 11(8):1047-1057.[2] Huang Zhi-li, Yoshihiro Urade, Osamu Hayaishi. Prostaglandins and adenosine in the regulation of sleep and wakefulness[J]. Current Topics in Medicinal Chemistry, 2007, 7(1):33-38.[3] Michael Lazarus, Chen Jiang-fan, Huang Zhi-li, et al. Adenosine and Sleep[J]. Handbook of Experimental Pharmacology, 2017, 2017:1-23.[4] Ravi Allada, Jerome M Siegel. Unearthing the phylogenetic roots of sleep[J]. Current Biology, 2008, 18(15):R670-R679.[5] Edward S Boyden, Zhang Feng, Ernst Bamberg, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9):1263.[6] Yizhar O, Fenno L E, Davidson T J, et al. Optogenetics in neural systems[J]. Neuron, 2011, 71(1):9-34.[7] Lief Fenno, Ofer Yizhar, Karl Deisseroth. The development and application of optogenetics[J]. Annual Review of Neuroscience, 2011, 34:389-412.[8] Mohamady El-Gaby, Zhang Yu, Konstantin Wolf, et al. Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH[J]. Cell Reports, 2016, 16(8):2259-2268.[9] Chuong A S, Miri M L, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin[J]. Nature Neuroscience, 2014, 17(8):1123.[10] Dong Shu-yun, Sarah C Rogan, Bryan Roth. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs[J]. Nature Protocols, 2010, 5(3):561.[11] Blaine N Armbruster, Li Xiang, Mark H Pausch, et al. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand[J]. Proceedings of the National Academy of Sciences, 2007, 104(12):5163-5168.[12] Bryan L Roth. DREADDs for neuroscientists[J]. Neuron, 2016, 89(4):683-694.[13] Zhu Hu, Bryan L Roth. DREADD: a chemogenetic GPCR signaling platform[J]. International J Neuropsychopharmacology, 2014, 18(1):pyu007.[14] Nathan J Marchant, Leslie R Whitaker, Jennifer M Bossert, et al. Behavioral and physiological effects of a novel kappa-opioid receptor-based DREADD in rats[J]. Neuropsychopharmacology, 2016, 41(2):402.[15] Eyal Vardy, J Elliott Robinson, Li Chia, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior[J]. Neuron, 2015, 86(4):936-946.[16] Mary Ann Greco, Patrick Fuller, Thomas C Jhou, et al. Opioidergic projections to sleep-active neurons in the ventrolateral preoptic nucleus[J]. Brain Research, 2008, 1245:96-107.[17] Romain Dubourget, Aude Sangare, Helene Geoffroy, et al. Multiparametric characterization of neuronal subpopulations in the ventrolateral preoptic nucleus[J]. Brain Structure and Function, 2017, 222(3):1153-1167.[18] Christelle Anaclet, Loris Ferrari, Elda Arrigoni, et al. The GABAergic parafacial zone is a medullary slow wave sleep–promoting center[J]. Nature Neuroscience, 2014, 17(9):1217.[19] Christelle Anaclet, Patrick M Fuller. Brainstem regulation of slow-wave-sleep[J]. Current Opinion in Neurobiology, 2017, 44:139-143.[20] Huang Zhi-li, Qu Wei-min, Li Wei-dong, et al. Arousal effect of orexin A depends on activation of the histaminergic system[J]. Proceedings of the National Academy of Sciences, 2001, 98(17):9965-9970.[21] Shirin Kashfi, Kamran Ghaedi, Hossein Baharvand, et al. A1 Adenosine Receptor Activation Modulates Central Nervous System Development and Repair[J]. Molecular Neurobiology, 2017, 54(10):8128-8139.[22] Huang Zhi-li, Qu Wei-min, Naomi Eguchi, et al. Adenosine A 2A, but not A 1, receptors mediate the arousal effect of caffeine[J]. Nature Neuroscience, 2005, 8(7):858.[23] Bertil B Fredholm, Yang Jiang-ning, Wang Ying-qing. Low, but not high, dose caffeine is a readily available probe for adenosine actions[J]. Molecular Aspects of Medicine, 2017, 55:20-25.[24] Ferré S. Adenosine Control of Striatal Function—Implications for the Treatment of Apathy in Basal Ganglia Disorders. In: Adenosine Receptors in Neurodegenerative Diseases[J]. Elsevier, 2017, 2017: 231-255.[25] Michaela Morelli, Nicola Simola, Patrizia Popoli, et al. Role of Adenosine in the Basal Ganglia[J]. In: Handbook of Behavioral Neuroscience, 2017, 24: 237-256.[26] Yuan Xiang-shan, Wang Lu, Dong Hui, et al. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus[J]. Elife, 2017, DOI: 10.7554/eLife.29055.[27] Casey E O'neill, Mckenzie L Le LeTendre, Ryan K Bachtell. Adenosine A 2A receptors in the nucleus accumbens Bi-directionally alter cocaine seeking in rats[J]. Neuropsychopharmacology, 2012, 37(5):1245.[28] Oishi Y, Xu Q, Wang L, et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice[J]. Nature Communications, 2017, 8(1):734.[29] Sara Valencia Garcia, Patrice Fort. Nucleus Accumbens, a new sleep-regulating area through the integration of motivational stimuli[J]. Acta Pharmacologica Sinica, 2018, 39(2):165.[30] Fang Teng, Dong Hui, Xu Xin-hong, et al. Adenosine A 2A receptor mediates hypnotic effects of ethanol in mice[J]. Scientific Reports, 2017, 7(1):12678.[31] Bradley F Boeve. Idiopathic REM sleep behaviour disorder in the development of Parkinson's disease[J]. The Lancet Neurology, 2013, 12(5):469-482.[32] Richard L Doty. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? [J] The Lancet Neurology, 2017, 16(6):478-488.[33] Wang Yi-qun, Tu Zhi-cai, Xu Xing-yuan, et al. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats[J]. J Neurochemistry, 2012, 120(2):314-324.[34] Huang Zhi-li, Zhang Ze, Qu Wei-min. Roles of adenosine and its receptors in sleep–wake regulation[J]. In: International Review of Neurobiology, 2014, 119: 349-371.[35] Wang Yi-qun, Li Rui, Wang Dian-ru, et al. Adenosine A 2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents[J]. Brain Structure and Function, 2017, 222(3):1351-1366.[36] Clifford B Saper, Patrick M Fuller. Wake–sleep circuitry: an overview[J]. Current Opinion in Neurobiology, 2017, 44:186-192.[37] Christelle Anaclet, Lin Jian-sheng, Ramalingam Vetrivelan, et al. Identification and characterization of a sleep-active cell group in the rostral medullary brainstem[J]. J Neuroscience, 2012, 32(50):17970-17976.[38] Ronald Szymusiak, Noor Alam, Teresa L Steininger, et al. Sleep–waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats[J]. Brain Research, 1998, 803(1-2):178-188.[39] Shinjae Chung, Franz Weber, Zhong Peng, et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling[J]. Nature, 2017, 545(7655):477.[40] Jamie M Monti, Pablo Torterolo, Patricia Lagos. Melanin-concentrating hormone control of sleep–wake behavior[J]. Sleep Medicine Reviews, 2013, 17(4):293-298.[41] Roda Rani Konadhode, Dheeraj Pelluru, Carlos Blanco-Centurion, et al. Optogenetic stimulation of MCH neurons increases sleep[J]. Journal of Neuroscience, 2013, 33(25):10257-10263.[42] Sonia Jego, Stephen D Glasgow, Carolina Gutierrez Herrera, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus[J]. Nature Neuroscience, 2013, 16(11):1637.[43] Tomomi Tsunematsu, Takafumi Ueno, Sawako Tabuchi, et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation[J]. J Neuroscience, 2014, 34(20):6896-6909.[44] Mircea Steriade. Corticothalamic resonance, states of vigilance and mentation[J]. Neuroscience, 2000, 101(2):243-276.[45] Ni Kun-ming, Hou Xiao-jun, Yang Ci-hang, et al. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep[J]. Elife, 2016, 5: e10382.[46] Laura D Lewis, Jakob Voigts, Francisco J Flores, et al. Thalamic reticular nucleus induces fast and local modulation of arousal state[J]. Elife, 2015, 4: 08760.[47] Mitrofanis J. Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta[J]. Neuroscience, 2005, 130(1):1-15.[48] Liu Jia, Hyun Joo Lee, Andrew J Weitz, et al. Frequency-selective control of cortical and subcortical networks by central thalamus[J]. Elife, 2015, 4: e09215.[49] Jurkowlaniec E, Trojniar W, Tokarski J. The EEG activity after lesions of the diencephalic part of the zona incerta in rats[J]. Acta Physiologica Polonica, 1990, 41(7):85-97.[50] Liu Kai, Juhyun Kim, Dong Won Kim, et al. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep[J]. Nature, 2017, 548(7669):582.[51] Lindsley D B, Bowden J, Magoun H. Effect upon the EEG of acute injury to the brain stem activating system[J]. Electroencephalography and Clinical Neurophysiology, 1949, 1(1):475-486.[52] Sakai Kazuya, Crochet Sylvain. Increase in antidromic excitability in presumed serotonergic dorsal raphe neurons during paradoxical sleep in the cat[J]. Brain Research, 2001, 898(2):332-341.[53] Matthew E Carter, Ofer Yizhar, Sachiko Chikahisa, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons[J]. Nature Neuroscience, 2010, 13(12):1526.[54] Huang Zhi-li, Sato Yo, Takatoshi Mochizuki, et al. Prostaglandin E2 activates the histaminergic system via the EP4 receptor to induce wakefulness in rats[J]. J Neuroscience, 2003, 23(14):5975-5983.[55] Lu Jun, Alvhild A Bjorkum, Xu Man, et al. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep[J]. J Neuroscience, 2002, 22(11):4568-4576.[56] Satvinder Kaur, Adrienne Junek, Michelle A Black, et al. Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats[J]. J Neuroscience, 2008, 28(2):491-504.[57] Barbara E Jones. From waking to sleeping: neuronal and chemical substrates[J]. Trends Pharmacol Sci, 2005, 26(11):578-586.[58] Thomas E Scammell, Elda Arrigoni, Jonathan O Lipton. Neural circuitry of wakefulness and sleep[J]. Neuron, 2017, 93(4):747-765.[59] Gritti Ivana, Pablo Henny, Galloni F, et al. Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters[J]. Neuroscience, 2006, 143(4):1051-1064.[60] Chen Li, Yin Dou, Wang Tian-xiao, et al. Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice[J]. Neuropsychopharmacology, 2016, 41(8):2133.[61] Han Yong, Shi Yu-feng, Xi Wang, et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions[J]. Current Biology, 2014, 24(6):693-698.[62] Christelle Anaclet, Nigel Paul Pedersen, Loris L Ferrari, et al. Basal forebrain control of wakefulness and cortical rhythms[J]. Nature Communications, 2015, 6:8744.[63] Xu Min, Chung Shinjae, Zhang Si-yu, et al. Basal forebrain circuit for sleep-wake control[J]. Nature Neuroscience, 2015, 18(11):1641.[64] John D Salamone, Merce Correa. The mysterious motivational functions of mesolimbic dopamine[J]. Neuron, 2012, 76(3):470-485.[65] Sun Huan-xin, Wang Dian-ru, Ye Chen-bo, et al. Activation of the ventral tegmental area increased wakefulness in mice[J]. Sleep and Biological Rhythms, 2017, 15(2):107-115.[66] Ada Eban-Rothschild, Gideon Rothschild, William J Giardino, et al. VTA dopaminergic neurons regulate ethologically relevant sleep–wake behaviors[J]. Nature Neuroscience, 2016, 19(10):1356.[67] El Mansari M, Sakai K, Jouvet M. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats[J]. Experimental Brain Research, 1989, 76(3):519-529.[68] Christa J Van Dort, Daniel P Zachs, Jonathan D Kenny, et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep[J]. Proceedings of the National Academy of Sciences, 2015, 112(2):584-589.[69] Soufiane Boucetta, Youssouf Cissé, Lynda Mainville, et al. Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat[J]. J Neuroscience 2014, 34(13):4708-4727.[70] Daniel Kroeger, Loris L Ferrari, Gaetan Petit, et al. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice[J]. J Neuroscience, 2017, 37(5):1352-1366.[71] Sherin J E, Priyattam J Shiromani, R W McCarley, et al. Activation of ventrolateral preoptic neurons during sleep[J]. Science, 1996, 271(5246):216-219.[72] Dmitry Gerashchenko, Matthew D Kohls, MaryAnn Greco, et al. Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat[J]. Journal of Neuroscience 2001, 21(18):7273-7283.[73] Anne Venner, Christelle Anaclet, Rebecca Y Broadhurst, et al. A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus[J]. Current Biology, 2016, 26(16):2137-2143.[74] Maya Lebow, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders[J]. Molecular Psychiatry, 2016, 21(4):450.[75] Shota Kodani, Shingo Soya, Takeshi Sakurai. Excitation of GABAergic neurons in the bed nucleus of the stria terminalis triggers immediate transition from non-rapid eye movement sleep to wakefulness in mice[J]. J Neurosci, 2017, 37(30):7164-7176. |
[1] | WANG Shuai-shuai, HAN Feng. Research Strategies of Combining Optogenetics with Electrophysiology in Neuropsychiatric Disorders [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(2): 46-54. |
[2] | HUANG Zhi-li. [J]. Acta Neuropharmacologica, 2018, 8(5): 97-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||