ACTA NEUROPHARMACOLOGICA ›› 2015, Vol. 5 ›› Issue (3): 36-45.
Previous Articles Next Articles
JIANG Yi-na, CHEN Nai-hong
Online:
2015-06-26
Published:
2015-07-06
Contact:
陈乃宏,男,博士生导师,教授,研究方向为神经药理学。E-mail: Chennh@imm.ac.cn
About author:
姜懿纳,女,在读硕士;研究方向:神经药理学;E-mail: 443446890@qq.com
CLC Number:
JIANG Yi-na, CHEN Nai-hong. Advances in Parkinson’s Disease-Causing Gene Parkin[J]. ACTA NEUROPHARMACOLOGICA, 2015, 5(3): 36-45.
[1] Dorsey E R, Constantinescu R, Thompson J P, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]. Neurology, 2007, 68(5): 384–386. [2] 王雪晶, 郭纪锋, 江泓, 等. 帕金森病相关蛋白Parkin 与PINK1的相互作用研究[J]. 生物化学和生物物理进展, 2010, 37(9): 983-987. [3] Rainer von Coelln, Valina L Dawson, Ted M Dawson. Parkin-associated Parkinson’s disease[J]. Cell Tissue Res, 2004, 318: 175-184. [4] Tohru Kitada, Shuichi Asakawa, Hattori N, et al. Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism[J]. Nature, 1998, 392(6676): 605-608. [5] Ruth Lovering, Isabel M Hanson, Katherine Borden, et al. Identification and preliminary characterization of aprotein motif related to the zinc finger[J]. Proc Natl Acad, 1993, 90(6): 2112-2116. [6] Ignacio Marin, Alberto Ferrus. Comparative genomics of the RBR family, including the Parkinson's disease-related gene Parkin and the genes of the ariadne subfamily[J]. Mol Biol Evol, 2002, 19(12): 2039-2050. [7] Carolyn A, Rankin Ambrish Roy, Yang Zhang, et al. Parkin, a top level manager in the cell’s sanitation department[J]. J Open Biochemistry, 2011, 5: 9-26. [8] Iris H Henn, Johanna M Gostner, Peter Lackner, et al. Pathogenic mutations inactivate Parkin by distinct mechanisms [J]. Neurochem, 2005, 92(1): 114-122. [9] Su Jin Ham, Soo Young Lee, Saera Song, et al. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity[J]. J Biol Chem, 2016, 291(4): 1803-1816. [10] Ventzislava A Hristova, Steven A Beasley, R Jane Rylett, et al. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase Parkin[J]. Bio Chem, 2009, 284(22): 14978-14986. [11] Beasley S A, Hristova V A, Shaw G S. Structure of the Parkinin-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease[J], Proc Natl Acad, 2007, 104(9): 3095-3100. [12] Cecile M Pickart, Michael J Eddins. Ubiquitin: structure, functions, mechanisms[J]. Biochimica Et Biophysica Acta, 2004, 1695(1-3): 55-72. [13] Kreider-Mueller A, Quinlivan PJ, Rauch M, et al. Synthesis, structure and reactivity of [Tm(Bu(t)]ZnH, a monomeric terminal zinc hydride compound in a sulfur-rich coordination environment: access to a heterobimetallic compound[J]. Chem Commun (Camb), 2016, 52(11): 2358-2361. [14] Jan-Michael Peters, Werner W Franke, Jurgen A Kleinschmidt. Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm[J]. J Biol Chem, 1994, 269(10): 7709-7718. [15] Jean-Francois Trempe, Veronique Sauvé, Karl Grenier, et al. Structure of Parkin reveals mechanisms for ubiquitin ligase activation[J]. Science, 2013, 340(6139): 1451-1455. [16] Tu Ya-qin, Chen Cai, Pan Jun-ru, et al. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis[J]. Int J Clin Exp Pathol, 2012, 5(8): 726-738. [17] Namrata Rastogi, Durga Prasad Mishra. Therapeutic targeting of cancer cell cycle using proteasome inhibitors[J]. Cell Div, 2012, 7(1): 26. [18] Khullar V, Cardozo L. The urethra (UPP, MUPP, instability, LPP)[J]. Eur Urol, 1998, 34 (Suppl 1): 20-22. [19] Joao H Duarte. Autoimmunity: Antigen presentation by B cells contributes to murine lupus[J]. Nat Rev Rheumatol, 2015: 1759-4790. [20] Kenny K K Chung, Valina L Dawson, Ted M Dawson. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders[J]. Trends Neurosci, 2001, 24(Suppl 11): 7-14. [21] Zhang Yao-Quan, Feng Bing, Yuan Fa-Huan. Effect of chronic renal failure medium on the ubiquitin proteasome pathway of arterial muscle cells[J]. Mol Med Rep, 2013, 7(3): 1021-1025. [22] Yamasaki L, Pagano M. Cell cycle, proteolysis and cancer[J]. Current Opinion in Cell Biology, 2004, (06): 623-628. [23] Kenny K K Chung, Zhang Yi, Kah Leong Lim, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1:implications for Lewy-body formation in Parkinson disease[J]. Nat Med, 2001, 7(10): 1144-1150. [24] Yuzuru Imai, Mariko Soda, Haruhisa Inoue, et al. An unfolded putative transmembrane polypeptide, which canlead to endoplasmic reticulum stress, is a substrate of Parkin[J]. Cell, 2001, 105(7): 891-902. [25] Lechtenberg B C, Rajput A, Sanishvili R, et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation[J]. Nature, 2016, 529(7587): 546-550. [26] Edgar R Kramer. The neuroprotective and regenerative potential of parkin and GDNF/Ret signaling in the midbrain dopaminergic system[J]. Neural Regen Res, 2015, 10(11): 1752-1753. [27] Duong P Huynh, Daniel R Scoles, Dung Nguyen, et al. The autosomalrecessive juvenile Parkinson disease gene product, Parkin, interactswith and ubiquitinates synaptotagmin XI[J]. Hum Mol Genet, 2003, 12(20): 2587-2597. [28] Glass A S, Huynh D P, Franck T, et al. Screening formutations in synaptotagmin XI in Parkinson's disease[J]. Neural Transm, 2004, Suppl(68): 21-28. [29] Romina Romaniello, Filippo Arrigoni, Maria Teresa Bassi, et al. Mutations in α-and β-Tubulin encoding genes: impplications in the brain malformations[J]. Brain Dev, 2015, 37(3): 273-280. [30] Satropoli J F, McDermott C, Martinat C, et al. Parkin is a component of an SCF-like ubiqution ligase complex and proteceta postmitotic neurons from kainate excitotoxicity[J]. Neuron, 2003, 37(5): 735-749. [31] 袁瑾静, 夏韵. 复方蒲黄汤对缺血性脑损伤小鼠脑组织中Parkin、Cyclin E蛋白的影响[J]. 同济大学学报: 医学版, 2014, 35(5): 38-46. [32] Kyoko Ikeuchi, Hiroyuki Marusawa, Mikio Fujiwara, et al. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers[J]. Tnternational J Cancer, 2009, 125(9): 2029-2035. [33] Emanuel Ferreira-Femandes, Sara L C Esteves, Luís Korrodi-Gregório, et al. Synphilin-1A is a Phosphoprotein Phosphatase 1-Interacting Protein and Affects PPP1 Sorting to Subcellular Compartments[J]. J Molecular Neuroscience, 2015, 55(2): 385-395. [34] Li Xue-ping, Yada Treesukosol, Alexander Moghadam, et al. Behavioral characterization of the hyperphagia synphilin-1 overexpressing mice[J]. PLoS One, 2014, 9(5): e91449/1-e91449/8, 8pp. [35] Casadei Nicolas, Poehler Anne-Maria, Tomas-Zapico Cristina, et al. Overexpression of synphilin-1 promotes clearance of soluble and misfolded alpha-synuclein without restoring the motor phenotype in aged A30P transgenic mice[J]. Human Molecular Genetics, 2014, 23(3): 787-781. [36] Okui Michiyo, Yamaki Akiko, Takayanagi Atsushi, et al. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases[J]. Experimental Cell Research, 2005, 309(1): 220-228. [37] Zhao Jing-hui, Ren Yong, Jiang Qian, et al. Parkin is recruited to the centrosome in response to inhibition of proteasomes[J]. Cell Sc, 2003, 116(Pt 19): 4011-4019. [38] James A Olzmann, Lih-Shen Chin. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway[J]. Autophagy, 2008, 4(1): 85-87. [39] Kao shyan-Yuan. Regulation of DNA repair by Parkin[J]. Biochemical Biophysical Reaserch Communications, 2009, 382(2): 321-325. [40] Qu Dian-bo, Ali Hage, Katie Don-Carolis, et al. BAG2 gene-mediated regulation of PINK1 protein is critical for mitochondrial translocation of PARKIN and neuronal survival[J]. J Biol Chem, 2015, 290(51): 30441-30452. [41] Yuzuru Imai, Mariko Soda, Shigetsugu Hatakeyama, et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity[J]. Molecular Cell, 2002, 10(1): 55-67. [42] Sangrem S Parelkar, Juan G Cadena, Chul Kim, et al. The Parkin-like human homolog of drosophila ariadne-1 (HHARI) can induce aggresome formation in mammalian cells and is immunologically detectable in lewy bodies[J]. J Molecular Neuroscience, 2012, 46(1): 109-121. [43] Fatima Elmehdawi, Wheway Gabrielle, Szymanska Katarzyna, et al. Human homolog of drosophila ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies[J]. Experimental Cell Research, 2013, 319(6): 161-172. [44] Sun M, Latou relle J C, Woten G F, et al. Influence of heterozygosity for Parkin mutation on onsetage in familial Parkinson disease: the Gene PD study[J]. Arch Neurol, 2006, 63: 826 -832. [45] Konovalova E V, Lopacheva O M, Grivennikov I A, et al. Mutations in the Parkinson's disease-associated PARK2 gene are accompanied by imbalance in programmed cell death systems[J]. Acta Naturae, 2015,7(4): 146-149. [46] 李立宏, 高国栋. 帕金森病基因突变多态性与其家族性和散发性的关系[J]. 中国临床康复, 2005, 9(17): 13-15. [47] Marder K S, Tang M X, Mejia-Santana H, et al. Predictors of Parkin mutation sinearly -onset Parkinson disease: theconsortium on risk for early-onset Parkinson disease study[J]. Arch Neurol, 2010, 67 (6): 731-738. [48] Konovalova E V, Lopacheva O M, Igor A Grivennikov, et al. Mutations in the Parkinson's disease-associated PARK2 gene are accompanied by imbalance in programmed cell death systems[J]. Acta Naturae, 2015, 7(4): 146-149. [49] 聂利珞, 郭纪锋, 张海南, 等. 中国南方汉族散发早发性帕金森综合征的Parkin 基因突变分析[J]. 中华神经科杂志, 2010, 43(10): 692-696. [50] 刘珂, 滕继军, 王修海. 散发性帕金森病 Parkin基因突变检测[J]. 青岛大学医学院学报, 2009, 45(2): 104-106. [51] Esther S P Wong, Jeanne M M Tan, Wang Cheng, et al. Relative sensitivity of Parkin and other cysteine-containing enzymes to stress-induced solubility alterations[J]. Biol Chem, 2007, 282(16): 12310-12318. [52] Schlehe J S, Lutz A K, Pilsl A, et al. Aberrant folding of pathogenic Parkin mutants: aggregation versus degradation[J]. J Biol Chem, 2008, 283(20): 13771-13779. [53] Linda Narhi, Stephen J Wood, Shirley Steavenson, et al. Both familial Parkinson’s disease mutation accelerate alpha-Syn aggregation [J]. J Biol Chem, 1999, 274(14): 9843-9846. [54] Toru Yasuda, Hideki Mochizuki. The regulatory role of a-synuclein and Parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease[J]. Apoptosis, 2010, 15(11): 1312-1321. [55] Lonskaya Irina, Desforges Nicole M, Hebron Michaeline L, et al. Ubiquitination increases Parkin activity to promote autophagic α-synuclein clearance[J]. PLoS One, 2013, 8(12): e83914/1-e83914/12, 12 pp. [56] Preeti J Khandelwal, Sonya B Dumanis, Li Rebekah Feng, et al. Parkinson-related Parkin reduces α-Synuclein phosphorylation in a gene transfer model[J], Molecular Neruodegeneration, 2010, 5: 47. [57] Fournier Margot, Roux Amandine, Garrigue Jerome, et al. Parkin depletion delays motor decline dose-dependently without overtly affecting neuropathology in α-synuclein transgenic mice[J]. BMC Neuroscience, 2013, 14: 135/1-135/13, 13 pp. [58] 柏杖勇, 李清华. PINK1/Parkin, 线粒体自噬与帕金森病[J]. 中国老年学杂志, 2014, 5(34): 2609-2613. [59] Fumika Koyano, Kei Okatsu, Hidetaka Kosako, et al. Ubiquitin is phosphorylated by PINK1 to activate Parkin[J]. Nature, 2014, 510(7503): 162-166. [60] Jessica A Williams, Ding Wen-xing. Targeting Pink1-Parkin-mediated mitophagy for treating liver injury[J]. Pharmacol Res, 2015, 102: 264-269. [61] Pei-I Tsai, Meredith M Course, Jonathan R Lovas, et al. PINK1-mediated phosphorylation of miro inhibits synaptic growth and protects dopaminergic neurons in drosophila[J], 2014, 4: 6962. [62] Wang X, Zhao X L, Xu L L, et al. Mitophagy in APPsw/PS1dE9 transgenic mice and APPsw stably expressing in HEK293 cells[J]. Eur Rev Med Pharmacol Sci, 2015, 19(23): 4595-602. [63] 贾焕珍, 鲁玲, 龚普盛, 等. PINK1 参与调节多巴胺的合成[J]. 基础医学与临床, 2012, 32(1): 16-20. [64] 王雪晶, 郭纪锋, 江泓, 等. 帕金森病相关蛋白Parkin与PINK1的相互作用研究[J]. 生物化学与生物物理进展, 2010, 37(9): :983-987. [65] Tan Eng-King. PINK1- and DJ-1-linked parkinsonism[J]. Parkinson's Disease: 2nd Edition, 2013: 175-180. [66] Jennifer N Cremer, Katrin Amunts, Axel Schleicher, et al. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice-A quantitative multireceptor study[J]. Neuroscience, 2015, 311: 539-551. [67] Aleyasin H, Rousseaux M W, Marcogliese P C, et al. DJ-1 protects the nigrostriata l axis from the neurotoxin MPTP by modulation of the AKT pathway[J]. Proc Natl Acad Sci USA, 2010, 107(7): 3186-3191. [68] Eric Duplan, Emilie Giaime, Julien Viotti. ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1[J]. J Cell Science, 2013, 126(9): 2124-2133. [69] Jean-Charles Paterna, Andreas Leng, Elisabeth Weber, et al. DJ-1 and parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice[J]. Mol Ther, 2007, 15(4): 698-674. [70] Zhou M, Xia Z Y, Lei S Q, et al. Role of mitophagy regulated by Parkin/DJ-1 in remote ischemic postconditioning-induced mitigation of focal cerebral ischemia-reperfusion[J]. Eur Rev Med Pharmacol Sci, 2015, 19(24): 4866-4871. [71] Meghan R Hennis, Katherine W Seamans, Marian A Marvin, et al. Behavioral and neurotransmitter abnormalities in mice deficient for Parkin, DJ-1 and superoxide dismutase[J]. PLoS One, 2013, 8(12): e84894/1-e84894/17, 17 pp. [72] Sorin Breit, Wachter T, D Schmid Bielenberg, et al. Efective long-term subthalamic stimulation in PARK8 positive Parkinson’s disease[J]. J Neurology, 2010, 257(7): 1205- 1207. [73] Tatsunori Maekawa, Makoto Kubo, Ikue Yokoyam, et al. Age-dependent and cell-population-restricted LRRK2 expression in nor-malmuse spleen [J]. Biochem Biophys Res Commun, 2010, 392(3): 431-435. [74] 杜青青, 沈勤. LRRK2基因突变与帕金森病[J]. 江苏大学学报: 医学版, 2010, 20(5): 455-458. [75] Lin Xian, Loukia Parisiadou, Gu Xing-long, et al. Leucine rich repeatkinase regulates the progression of neuro pathology induced by Parkinsons-disense related mutant alpha-synuclein [J]. Neuron, 2009, 64(6): 807-827. [76] Huang Yue, Song Yun Ju Christine, Murphy Karen, et al. LRRK2 and Parkin immunoreactivity in multiple system atrophy inclusions[J]. Acta Neuropathologica, 2008, 116(6): 639-646. [77] Ng Chee-Hoe, Guan Melissa S H, Koh Cherlyn, et al. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease[J]. J Neuroscience, 2012, 32(41): 14311-14317. [78] Ng Chee-Hoe, Shaun Z S Mok, Cherlyn Koh, et al. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila[J]. J Neuroscience, 2009, 29(36): 11257-11262. [79] Nadia Iovieno, Andres A Nierenberg, Susannah R Parkin, et al. Relationship between placebo response rate and clinical trial outcome in bipolar depression[J]. J Psychiatr Res, 2015, 74: 38-44. [80] 杨智明, 李煦照, 卢芳, 等. 帕金森病的线粒体发病机制研究进展[J]. 中国老年学杂志, 2014, (21): 6233-6235. [81] Dmitry B Zorov, Magdalena Juhaszova, Steven J Sollott. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3): 909-950. [82] Ghazaleh Ashrafi, Julia S Schlehe, Matthew J LaVoie, et al. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin[J]. J Cell Biology, 2014, 206(5): 655-670. [83] 李玉娟, 王丹巧. 线粒体功能障碍与帕金森病关系研究进展[J]. 中国药理学和毒理学杂志, 2013, 27(4): 727-730. [84] 曾爱源, 李琼, 黄强, 等. 过表达PINK1改善SCA3/MJD转基因果蝇模型的线粒体功能[J]. 中国生物化学与分子生物学报, 2015, 31(1): 88-95. [85] Derek P Narendra, Richard J Youle. Targeting mitochondrial dysfunction role for PINK1 and Parkin in mitochondrial quality control[J]. Antioxid Redox Signal, 2011, 14(10): 1929-1938. [86] Van Humbeeck Cindy, Cornelissen Tom, Hofkens Hilde, et al. Parkin interacts with Ambral to induce mitophagy[J]. J Neurosci, 2011, 7(11): 1555-1556. [87] Di Sha, Lih-Shen Chin, Lian Li. Phosphorylation of Parkin by Parkinson disease-linked kinase PINK1 activates Parkin E3 ligase function and NF-κB signaling[J]. Hum Mol Genet, 2010, 19(2): 352-363. [88] Richard J Youle, Derek P Narendra. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12(1): 9-14. [89] Marques-Aleixo I, Santos-Alves E, Balça MM, et al. Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling[J]. Mitochondrion, 2015, 26: 43-57. |
[1] | XIE bin, HUANG Zhi-yuan, LIN Duo-duo, YANG Fu-long, XIE Yi-bin. Effect of Acupuncture Combined with Medicine on Depressive Symptoms of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 5-8. |
[2] | SUN Li-cong, ZHANG Dan-shen. Research Progress on Potential Treatment of Alzheimer’s Disease with Alkaloids [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 33-37. |
[3] | WANG Si-yi, LI Xian-xiang, LIU Yi-zhou, DU Shuang, GE Chao, LIU Si-si. Current Situation and Prospect of Alzeimer’s Disease Treatment [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 38-42. |
[4] | ZHAO Yu-wei, ZHEN Yan-jie, DAI Yue-ying, SHEN Li-xia. Study on the Neuroprotective Mechanism of Quercetin in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(5): 55-64. |
[5] | HAI Ji-tao, LUO Huan-min. Progress on the Relationship between Pathogenic Microorganisms and Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(4): 58-64. |
[6] | ZHANG Hao-ting, SONG Gui-qin, CUI Ruo-tong, HAO Min, WANG Wen-dong. Mining Target Genes of Alzheimer’s Disease Associated with Biological Clock by Bioinformatics Analysis [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 1-7. |
[7] | YANG Xu-hua, DU Shuang, SHEN Li-xia, HAO Jun-rong. Research Progress in Drug Treatment of Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(3): 47-53. |
[8] | ZHEN Yan-jie, GUO Tong-lin, ZHAO Yu-wei, SHEN Li-xia. Study Progress on Phytoestrogen-Mediated Mitochondrial Pathway’s Neuroprotective Effects in Alzheimer’s Disease [J]. ACTA NEUROPHARMACOLOGICA, 2020, 10(1): 40-46. |
[9] | YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2019, 9(5): 50-64. |
[10] | ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2018, 8(6): 9-20. |
[11] | 王奇. Bushen-Yizhi Formula Inhibits the NLRP3/NFκB Mediated Neuroinflammation and Improves the Motor Dysfunction in a Mouse Model of Parkinson's Disease [J]. Acta Neuropharmacologica, 2018, 8(5): 71-72. |
[12] | CUI Su-ying, SONG Jin-zhi, CUI Xiang-yu, HU Xiao, DING Hui, YE Hui, ZHANG Yong-he. Intracerebroventricular Streptozocin-induced Alzheimer’s Disease-like Sleep Disorders: Role of the GABAergic System in the Parabrachial Complex [J]. Acta Neuropharmacologica, 2018, 8(5): 96-97. |
[13] | YU Li-li1,2,XU Li1,WANG Yi-nuo1,XUE Lu-ning1,Gou Ji-wei1,LI Hong-bo1,HOU Xue-qin1*,ZHANG Han-ting1*. Effects of Osthole on Learning and Memory and the Estrogen Pathway in Ovariectomized Rats [J]. Acta Neuropharmacologica, 2018, 8(4): 7-8. |
[14] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms [J]. Acta Neuropharmacologica, 2018, 8(4): 23-25. |
[15] | WANG Hao1, ZHANG Fang-fang1, FU Hua-rong1, ZHOU Yan-meng1, LIU Xin1, HOU Xue-qin 1, HU Wei2, Rolf Hansen2, XU Ying3, James O’Donnell3, ZHANG Han-ting1,2. Targeting PDE4 for Alzheimer’s Disease and Alcoholism: An implication in Alcohol-Related Dementia? [J]. Acta Neuropharmacologica, 2018, 8(4): 39-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||