神经药理学报 ›› 2017, Vol. 7 ›› Issue (1): 53-64.DOI: 10.3969/j.issn.2095-1396.2017.01.007
• 综述 • 上一篇
孙志华,罗素兰
出版日期:
2017-02-26
发布日期:
2017-12-01
通讯作者:
罗素兰,女,海南大学长江学者特聘教授,博士,博士生导师;研究方向:海洋药物与生物技术;Tel:+86-089866289538,E-mail:luosulan2003@163.com
作者简介:
孙志华,男,博士研究生;研究方向:芋螺毒素抗癌研究;E-mail:zhihuasun918@163.com
基金资助:
国家自然科学基金项目(No.81420108028),长江学者和创新团队发展计划(No.IRT_15R15),海南省普通高等学校研究生创新科研课题(No.Hyb2016-08)
SUN Zhi-hua,LUO Su-lan
Online:
2017-02-26
Published:
2017-12-01
Contact:
罗素兰,女,海南大学长江学者特聘教授,博士,博士生导师;研究方向:海洋药物与生物技术;Tel:+86-089866289538,E-mail:luosulan2003@163.com
About author:
孙志华,男,博士研究生;研究方向:芋螺毒素抗癌研究;E-mail:zhihuasun918@163.com
Supported by:
国家自然科学基金项目(No.81420108028),长江学者和创新团队发展计划(No.IRT_15R15),海南省普通高等学校研究生创新科研课题(No.Hyb2016-08)
摘要: 烟碱型乙酰胆碱受体(nicotinic acetylcholine receptors,nAChRs)属于配体门控离子通道,广泛分布于中枢神经系统、周围神经系统和肌肉组织非神经系统中,不同的亚基组成形式决定了其对激动剂或拮抗剂不同的亲和力。近期的研究表明,nAChRs 与神经痛、帕金森病、阿尔茨海默病(老年痴呆症)以及小细胞肺癌、乳腺癌、宫颈癌等多种疾病的病理进程息息相关。该文就几种疾病与nAChRs 结构、功能及其二者相关性进行综述,并重点阐述 nAChRs 介导的 α- 芋螺毒素抗肿瘤研究进展,以期为芋螺毒素的抗肿瘤药物的研发提供理论依据。
中图分类号:
孙志华, 罗素兰. 烟碱型乙酰胆碱受体及其相关疾病[J]. 神经药理学报, 2017, 7(1): 53-64.
SUN Zhi-hua, LUO Su-lan. Nicotinic Acetylcholine Receptors and Diseases[J]. ACTA NEUROPHARMACOLOGICA, 2017, 7(1): 53-64.
[1] Edson X Albuquerque, Sdna F R Pereira, Manickavasagom Alkondon, et al. Mammalian nicotinic acetylcholine receptors: from structure to function[J]. Physiological Reviews, 2009, 89(1): 73-120.[2] Dang Ning-ning, Meng Xian-guang, Song Hai-yan. Nicotinic acetylcholine receptors and cancer[J]. Biomedical Reports, 2016, 4(5): 515-518.[3] Sergei Grando. Connections of nicotine to cancer[J]. Nature Reviews Cancer, 2014, 14(6): 419-429.[4] Bianca M Conti-Tronconi, Kathryn E Mclane, Michael A Raftery, et al. The nicotinic acetylcholine receptor: structure and autoimmune pathology[J]. Critical Reviews in Biochemistry & Molecular Biology, 1994, 29(2): 69-123.[5] Volodymyr Gerzanich, Wang Fan, Alexander Kuryatov, et al. α5 Subunit alters desensitization, pharmacology, ca++ permeability and ca++ modulation of human neuronal α3 nicotinic receptors[J].J Pharmacology Experimental Therapeutics, 1998, 286(1): 311-320.[6] Eline K M Lebbe, Steve Peigneur, Isuru Wijesekara, et al. Conotoxins targeting nicotinic acetylcholine receptors: an overview[J]. Marine Drugs, 2014, 12(5): 2970-3004.[7] Cecilia Gotti, Francesco Clementi, Alice Fornari, et al. Structural and functional diversity of native brain neuronal nicotinic receptors[J]. Biochemical Pharmacology, 2009, 78(7): 703-711.[8] Jon Lindstrom, Paul Whiting, Ralf Schoepfer, et al. Structure of neuronal nicotinic receptors[J]. Springer Berlin Heidelberg, 1988, doi: 10.1007/978-3-642-74167-8_13.[9] Raymond Hurst, Hans Rollema, Daniel Bertrand. Nicotinic acetylcholine receptors: from basic science to therapeutics[J]. Pharmacology & Therapeutics, 2013, 137(1): 22-54.[10] Su-lan Luo, Dongting Zhangsun, Wu Yong, et al. Characterization of a novel alpha-conotoxin from conus textile that selectively targets alpha6/alpha3beta2betab3 nicotinic acetylcholine receptors[J]. J Medicinal Chemistry, 2012, 56(23): 9655-9663.[11] Luo Su-lan, Dongting Zhang-sun, Christina I Schroeder, et al. A novel α4/7-conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors[J]. Faseb J: official Publication of the Federation of American Societies for Experimental Biology, 2014, 28(4): 1842-1853.[12] Annette Nicke, Susan Wonnacott, Richard J Lewis. Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes[J]. J European Biochemistry, 2004, 271(12): 2305–2319.[13] Katju Brejc, Willem J van Dijk, Remco V Klaassen, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors[J]. Nature, 2001, 411(6835): 269-276.[14] Bo Lin, Xu Man-yu, Zhu Xiao-peng, et al. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR[J]. Scientific Reports, 2016, 6: 22349.[15] Patrick H N Celie, Igor E Kasheverov, Dmitry Y Mordvintsev, et al. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant[J]. Nature Structural & Molecular Biology, 2005, 12(7): 582-588.[16] Chris Ulens, Ronald C Hogg, Patrick H Celie, et al. Structural determinants of selective α-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP[J]. Proceedings of the National Academy of Sciences USA, 2006, 103(10): 3615-3620.[17] Sebastien Dutertre, Chris Ulens, Regina Buttner, et al. AChBP-targeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity[J]. Embo J, 2007, 26(16): 3858-3867.[18] Marios Zouridakis, Petros Giastas, Eleftherios Zarkadas, et al. Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain[J]. Nature Structural & Molecular Biology, 2014, 21(11): 976-980.[19] Claudio L Morales-Perez, Colleen M Noviello, Ryan E Hibbs. X-ray structure of the human α4β2 nicotinic receptor[J]. Nature, 2016, 538(7625): 411.[20] Patrizia Russo, Alessio Cardinale, Stefano Margaritora, et al. Nicotinic receptor and tobacco-related cancer[J]. Life Sciences, 2012, 91(21–22): 1087-1092.[21] Sergio Fucile. Ca2+ permeability of nicotinic acetylcholine receptors[J]. Cell Calcium, 2004, 35(1): 1-8.[22] Laura Jean Bierut. Nicotine dependence and genetic variation in the nicotinic receptors[J]. Drug & Alcohol Dependence, 2009, 104(supplement 1): S64-S69.[23] F Fasoli, Gotti C. Structure of neuronal nicotinic receptors[M/CD]. Springer International Publishing, 2015, 23:1-17.与8重复[24] 蔡建光, 印大中. 阿尔茨海默病主要相关基因及其功能蛋白研究进展[J]. 中国神经免疫学和神经病学杂志, 2006, 13(2): 120-123.[25] John Hardy, Dennis J Selkoe. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.[26] 沈颖华, 殷明. 烟碱型乙酰胆碱受体的激动与阿尔茨海默病的治疗[J]. 解放军药学学报, 2008, 24(2): 159-162.[27] 戴婷婷, 田绍文. 阿尔兹海默病靶向治疗研究进展[J]. 中南医学科学杂志, 2015, 4: 452-456.[28] C M Flores, Rogers S W, Pabreza L A, et al. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment[J]. Molecular pharmacology, 1992, 41(1): 31.[29] Bruno Buisson, Daniel Bertrand. Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function[J]. J Neuroscience Official J Society for Neuroscience, 2001, 21(6): 1819-1829.[30] Yolanda F Vallejo, Bruno Buisson, Daniel Bertrand, et al. Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism[J]. J Neuroscience Official J Society for Neuroscience, 2005, 25(23): 5563-5572.[31] Hoau-Yan Wang, Lee D H, Michael Robert D'Andrea, et al. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology[J]. J Biological Chemistry, 2000, 275(8): 5626-5632.[32] Chen Ling, Kiyofumi Yamada, Toshitaka Nabeshima, et al. alpha7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats[J]. Neuropharmacology, 2006, 50(2): 254.[33] Qin Ryan, Amna Ibrahim, Martin H Cohen, et al. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2[J]. The Oncologist, 2008, 13(10): 1114-1119.[34] Ana Pocivavsek, Laura Icenogle, Edward D Levin. Ventral hippocampal α7 and α4β2 nicotinic receptor blockade and clozapine effects on memory in female rats[J]. Psychopharmacology, 2006, 188(4): 597-604.[35] C Fernandes, Hoyle E, Dempster E, et al. Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory[J]. Genes Brain & Behavior, 2006, 5(6): 433.[36] Naoya Oishi, Kazuo Hashikawa, Hidefumi Yoshida, et al. Quantification of nicotinic acetylcholine receptors in Parkinson's disease with (123)I-5IA SPECT[J]. J Neurological Sciences, 2007, 256(1): 52-60.[37] Jennifer M Kulak, J Michael Mcintosh, Maryka Quik. Loss of nicotinic receptors in monkey striatum after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment is due to a decline in alpha-conotoxin MII sites[J]. Molecular Pharmacology, 1992, 2002, 61(1): 230-238.[38] Margaret R Spitz, Christopher I Amos, Dong Qiong, et al. The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer[J]. J National Cancer Institute, 2008, 100(21): 1552.[39] Jen C Wang, Carlos Cruchaga, Nancy L Saccone, et al. Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5[J]. Human Molecular Genetics, 2009, 18(16): 3125-3135.[40] N L Benowitz. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics[J]. Annual Review of Pharmacology & Toxicology, 2009, 49(1): 57-71.[41] Ma Reina D Improgo, Nicolette A Schlichting, Roxana Y Cortes, et al. ASCL1 regulates expression of the chrna5/a3/b4 lung cancer susceptibility locus[J]. Molecular Cancer Research, 2010, 8(2): 194-203.[42] David Chi-leung, Luc Girard, Ruben Ramirez, et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers[J]. Cancer Research, 2007, 67(10): 4638-4647.[43] Herve Sartelet, Kamel Maouche, Jean-laurent Totobenazara, et al. Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNEC)[J]. Pathology Research & Practice, 2008, 204(12): 891.[44] Anupam Paliwal, Thomas Vaissière, Annette Krais, et al. Aberrant DNA methylation links cancer susceptibility locus 15q25.1 to apoptotic regulation and lung cancer[J]. Cancer Research, 2010, 70(7): 2779-2788.[45] Song Ping-fang, Harmanjatinder S Sekhon, Jia Yi-bing, et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma[J]. Cancer Research, 2003, 63(1): 214-221.[46] Sergei Grando. Basic and clinical aspects of non-neuronal acetylcholine: biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors[J]. J Pharmacol Sci, 2008, 106(2): 174-179.[47] Ma Reina Improgo, Lindsey G Soll, Andrew R Tapper, et al. Nicotinic acetylcholine receptors mediate lung cancer growth[J]. Frontiers in Physiology, 2012, 4(251): 1- 6.[48] 陆晶晶, 黄建浩, 尹琦, et al. 烟碱型乙酰胆碱受体基因多态性与NSCLC的相关性研究[J]. 同济大学学报: 医学版, 2016,( 3): 36-39.[49] Bhartimittu, Yashila Girdhar. Lung cancer and nicotine[J]. J Chromatogr Sep Tech, 2016, 7: 2.[50] T Nishioka, Luo L Y, Shen L, et al. Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability[J]. J British Cancer, 2014, 110(7): 1785-1792.[51] Jin Zhao-hui, Gao Feng-qin, Tammy Flagg, et al. Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis[J]. J Biological Chemistry, 2004, 279(22): 23837-23844.[52] Ma Reina Improgo, Andrew R Tapper, Paul D Gardner. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer[J]. Biochemical Pharmacology, 2011, 82(8): 1015-1021.[53] Si-qin Luo, Jennifer M Kulak, G Edward Cartier, et al. α-Conotoxin AuIB selectively blocks α3β4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release[J]. J Neuroscience, 1998, 18(21): 8571- 8579.[54] Sulan Luo, Zhangsun Dong-ting, Zhu Xiao-peng, et al. Characterization of a novel alpha-conotoxin txid from conus textile that potently blocks rat alpha3beta4 nicotinic acetylcholine receptors[J]. J Medicinal Chemistry, 2011, 56(23): A-I.[55] Hai-ji Sun, Ma Xiao-li. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells[J]. Experimental & Toxicologic Pathology Official J Gesellschaft Fur Toxikologische Pathologie, 2015, 67(9): 477-482.[56] Anna Chikova, Sergei A Grando. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation[J]. Plos One, 2011, 6(11): e27978.[57] Richard D Egleton, Kathleen C Brown, Piyali Dasgupta. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis[J]. Trends in Pharmacological Sciences, 2008, 29(3): 151.[58] Takashi Nishioka, Guo Jin-jin, Daisuke Yamamoto, et al. Nicotine, through upregulating pro-survival signaling, cooperates with NNK to promote transformation[J]. J Cellular Biochemistry, 2010, 109(1): 152–161.[59] Alexander I Chernyavsky, Juan Arredondo, Qian Jing, et al. Coupling of ionic events to protein kinase signaling cascades upon activation of alpha7 nicotinic receptor: cooperative regulation of alpha2-integrin expression and Rho kinase activity[J]. J Biological Chemistry, 2009, 284(33): 22140-22148.[60] Mina Kalantari-Dehaghi, Erinn A Parnell, Tara Armand, et al. The nicotinic acetylcholine receptor-mediated reciprocal effects of the tobacco nitrosamine NNK and SLURP-1 on human mammary epithelial cells[J]. International Immunopharmacology, 2015, 29(1): 99-104.[61] Chia-Hwa Lee, Ching-Shui Huang, Ching-Shyang Chen, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells[J]. J National Cancer Institute, 2010, 102(17): 1322-1335.[62] E X Albuquerque, Pereira E F R, Alkondon M, et al. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function[J]. Physiological Reviews, 2009, 89(1): 73-120.与1重复[63] Chih-Hsiung Wu, Chia-Hwa Lee, Yuan-Soon Ho. Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy[J]. Clinical Cancer Research An Official J American Association for Cancer Research, 2011, 17(11): 3533-3541.[64] Shih-Hsin Tu, Ku Chung-yu, Ho Chi-tang, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells[J]. Molecular Nutrition & Food Research, 2011, 55(3): 455-466.[65] Ching-Shyang Chen, Chia-Hwa Lee, Chang-da Hsieh, et al. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins[J]. Breast Cancer Research and Treatment, 2011, 125(1): 73-87.[66] Yung Leun Shih, Liu Hui-ching, Chen Ching Shyang, et al. Combination treatment with luteolin and quercetin enhances antiproliferative effects in nicotine-treated MDA-MB-231 cells by down-regulating nicotinic acetylcholine receptors[J]. J Agricultural & Food Chemistry, 2010, 58(1): 235-241.[67] Luo Su-lan, Dongting Zhangsun, Peta J Harvey, et al. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist[J]. Proceedings of the National Academy of Sciences USA, 2015, 112(30): 4026-4035.[68] Li Xiao-dan, Hu Yuan-yan, Wu Yong, et al. Anti-hypersensitive effect of intramuscular administration of αO-conotoxin GeXIVA[1,2] and GeXIVA[1,4] in rats of neuropathic pain[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 66: 112-119.[69] Mei Dong, Lin Zhi-qiang, Fu Ji-jun, et al. The use of α-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to α7 nAChR-overexpressing breast cancer[J]. Biomaterials, 2015, 42: 52-65.[70] Michael Ellison, Gao Fan, Wang Hai-long, et al. Alpha-conotoxins ImI and ImII target distinct regions of the human alpha7 nicotinic acetylcholine receptor and distinguish human nicotinic receptor subtypes[J]. Biochemistry, 2004, 43(51): 16019-16026.[71] Layla Azam, J Michael Mcintosh. Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA[J]. J Neurochemistry, 2012, 122(6): 1137-1144.[72] Layla Azam, Athanasios Papakyriakou, Marios Zouridakis, et al. Molecular interaction of α-conotoxin RgIA with the rat α9α10 nicotinic acetylcholine receptor[J]. Molecular pharmacology, 2015, 87(5): 855-864.[73] Lorenzo Di Cesare Mannelli, Lorenzo Cinci, Laura Micheli, et al. α-Conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement[J]. Pain, 2014, 155(10): 1986-1995.[74] Michael Ellison, Christian Haberlandt, Maria Eugenia Gomez-Casati, et al. Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR[J]. Biochemistry, 2006, 45(5): 1511-1517.[75] Haylie K Romero, Sean B Christensen, Lorenzo Di Cesare Mannelli, et al. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain[J]. Proceedings of the National academy of Sciences USA, 2017, 114 (10): E1825.[76] Sun Dan-dan, Ren Zheng-hua, Zeng Xia-yun, et al. Structure–function relationship of conotoxin lt14a, a potential analgesic with low cytotoxicity[J]. Peptides, 2011, 32(2): 300-305.[77] Can Peng, Tang Shao-jun, Pi Can-hui, et al. Discovery of a novel class of conotoxin from Conus litteratus , lt14a, with a unique cysteine pattern[J]. Peptides, 2006, 27(9): 2174-2181.[78] Sulan Luo, Zhangsun Dongting, Zhu Xiao-peng, et al. Characterization of a novel α-conotoxin TxID from Conus textile that potently blocks rat α3β4 nicotinic acetylcholine receptors[J]. J Medicinal Chemistry, 2013, 288(2): 894-902.[79] Valentin A Pavlov, Wang Hong, Christopher J Czura, et al. The cholinergic anti-inflammatory pathway[J]. Brain Behavior & Immunity, 2005, 19(6): 493-499.[80] Lyudmila V Borovikova, Svetlana Ivanova, Zhang Ming-huang, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J]. Nature, 2000, 405(6785): 458-462.[81] Hong Wang, Yu Man, Mahendar Ochani, et al. Nicotinic acetylcholine receptor |[alpha]|7 subunit is an essential regulator of inflammation[J]. Nature, 2003, 421(6921): 384-388.[82] 张琴, 喻文亮. 胆碱能抗炎通路研究进展[J]. 中国免疫学杂志, 2012, 28(11): 1054-1056. |
[1] | 张思琪, 张元元. 视网膜色素上皮细胞来源外泌体与老年性黄斑病变[J]. 神经药理学报, 2020, 10(4): 51-57. |
[2] | 熊梦瑶, 贾英丽, 杨宝学. 前列腺素受体4 与肾脏疾病相关性研究进展[J]. 神经药理学报, 2020, 10(3): 54-64. |
[3] | 王帅帅, 韩峰. 光遗传学结合在体电生理在神经精神疾病研究中的实施策略及意义[J]. 神经药理学报, 2020, 10(2): 46-54. |
[4] | 何盼, 刘月涛, 杜冠华, 秦雪梅. 肌少症研究进展[J]. 神经药理学报, 2020, 10(1): 47-53. |
[5] | 王迪,成秀梅,任威威,等. 内皮素在妇科疾病中发病作用机制的研究进展[J]. 神经药理学报, 2019, 9(6): 31-35. |
[6] | 吴县,洪浩. 胆汁酸及其受体与中枢神经系统疾病[J]. 神经药理学报, 2019, 9(1): 23-30. |
[7] | 郭沫然,周城伟,张志华. 肾上腺髓质素在心、肺相关性疾病中的研究进展[J]. 神经药理学报, 2019, 9(1): 31-35. |
[8] | 王文*,孙芳玲, 刘婷婷, 艾厚喜, 郭德玉. Advances in Treatment of Cardiovascular and Cerebrovascular Diseases(心脑血管疾病再生与修复治疗研究进展)[J]. 神经药理学报, 2018, 8(4): 62-63. |
[9] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[10] | 孙安阳,张骑鹏. CRISPR/Cas9 基因编辑技术在脑退行性疾病研究中的应用及问题[J]. 神经药理学报, 2018, 8(2): 72-72. |
[11] | 王同兴,韩 露,程肖蕊,周文霞,张永祥. 基于神经内分泌免疫调节分子网络的防治阿尔茨海默病药物新靶点的探索性研究[J]. 神经药理学报, 2018, 8(2): 76-76. |
[12] | 马娟,张法丽,钱忠明. 铁调素和铁相关神经退行性疾病[J]. 神经药理学报, 2018, 8(1): 16-22. |
[13] | 王允,镇学初. 新型Sigma-1 受体变构调节剂的发现和潜在应用[J]. 神经药理学报, 2018, 8(1): 35-44. |
[14] | 边芳,侯艳宁. ATP 敏感钾通道在神经退行性疾病中的研究进展[J]. 神经药理学报, 2017, 7(5): 52-58. |
[15] | 徐唯哲,李晓蓉,熊杰,徐平湘,薛明. 基于血脑屏障的神经药物转运体研究概况[J]. 神经药理学报, 2016, 6(6): 45-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||