神经药理学报 ›› 2012, Vol. 2 ›› Issue (4): 47-57.
王久强1 朱姝1 朱雪霏1 郭彩霞2 唐铁山1
1. 生物膜与膜生物国家重点实验室,中国科学院动物研究所,北京,100101,中国
出版日期:
2012-08-26
发布日期:
2014-06-27
通讯作者:
唐铁山,guocx@big.ac.cn, tangtsh@ioz.ac.cn
基金资助:
科技部重大科学计划(No.2011CB965003、 No.2011CB944302、No.2012CB944702),国家自然科学基金 (No.30970588、No.31170730、No.81371415) 和中科院百人计划项目的支持
WANG Jiu-Qiang1, ZHU Shu1, ZHU Xue-Fei1, GUO Cai-Xia2, TANG Tie-Shan1
Online:
2012-08-26
Published:
2014-06-27
Contact:
唐铁山,guocx@big.ac.cn, tangtsh@ioz.ac.cn
Supported by:
科技部重大科学计划(No.2011CB965003、 No.2011CB944302、No.2012CB944702),国家自然科学基金 (No.30970588、No.31170730、No.81371415) 和中科院百人计划项目的支持
摘要: 亨廷顿舞蹈病(Huntington’s disease, HD)是一种致命的遗传性神经退行性疾病,它是由亨廷顿蛋白N-端的多聚谷氨酰胺延长造成的。该病表现为纹状体中的中型棘神经元(medium spiny neurons, MSN)逐渐丢失。HD的致病机理还不完全清楚,目前越来越多的研究结果显示线粒体在HD中发挥着重要作用。已有证据充分表明了HD细胞中线粒体的形态和结构发生了明显改变。此外,HD细胞中线粒体某些电子传递链复合物蛋白活性或蛋白表达水平的降低,以及突变亨廷顿蛋白对细胞核基因转录的影响进一步引起了线粒体功能障碍。除了线粒体形态和功能的改变,HD细胞线粒体的Ca2+稳态也发生了紊乱,且线粒体的氧化压力水平显著升高,进而导致HD细胞线粒体基因组DNA损伤。由于线粒体在细胞凋亡过程发挥着重要作用,因此HD细胞中线粒体的这些变化揭示了线粒体异常参与了HD细胞特别是HD神经细胞的凋亡过程。本篇综述我们将集中探讨HD中线粒体的一系列异常变化,为阐明HD的发病机理和HD治疗提供一些启发。
中图分类号:
王久强, 朱姝, 朱雪霏, 郭彩霞, 唐铁山. 线粒体功能异常与舞蹈病的病理发生机制[J]. 神经药理学报, 2012, 2(4): 47-57.
WANG Jiu-Qiang, ZHU Shu, ZHU Xue-Fei, GUO Cai-Xia, TANG Tie-Shan. Role of Mitochondrial Dysfunction in Huntington’s Disease[J]. Acta Neuropharmacologica, 2012, 2(4): 47-57.
[1] G Vonsattel, Jean Paul, Difiglia Marian. Huntington disease [J]. J Neuropathol Experl Neurol, 1998, 57(5): 369-384.[2] Schwarcz Robert, Whetsell William O, Mangano Richard M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain [J]. Science, 1983, 219(4582): 316-318.[3] M Flint Beal, Emmanuel Brouillet, Bruce G Jenkins, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid [J]. J Neurosci, 1993, 13(10): 4181-4192.[4] Damiano Maria, Galvan Laurie, Déglon Nicole, et al. Mitochondria in Huntington's disease [J]. Biochim Biophys Acta, 2010, 1802(1): 52-61.[5] Mangiarini Laura, Sathasivam Kirupa, Seller Mary, et al. Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice [J]. Cell, 1996, 87(3): 493-506.[6] Levine Michael S, Klapstein Gloria J, Koppel Ahrin, et al. Enhanced sensitivity to N‐methyl‐D‐aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease [J]. J Neurosci Res, 1999, 58(4): 515-532.[7] Turmaine Mark, Raza Aysha, Mahal Amarbirpal, et al. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease [J]. Proceed National Acad Science, 2000, 97(14): 8093-8097.[8] Davies Stephen W, Turmaine Mark, Cozens Barbara A, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J]. Cell, 1997, 90(3): 537-548.[9] Hodgson J Graeme, Agopyan Nadia, Gutekunst Claire-Anne, et al. A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration [J]. Neuron, 1999, 23(1): 181-192.[10] Slow Elizabeth J, Van Raamsdonk Jeremy, Rogers Daniel, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease [J]. Hum Mol Genet, 2003, 12(13): 1555-1567.[11] Hackenbrock Charles R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria [J]. J Cell Biol, 1966, 30(2): 269-297.[12] Benard Giovanni, Rossignol Rodrigue. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics [J]. Antioxid Redox Signal, 2008, 10(8): 1313-1342.[13] Yu Tian-zheng, Robotham James L, Yoon Yisang. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology [J]. Proc Natl Acad Sci USA, 2006, 103(8): 2653-2658.[14] Wasilewski Micha, Scorrano Luca. The changing shape of mitochondrial apoptosis [J]. Trends Endocrinol Metab, 2009, 20(6): 287-294.[15] Tellez-Nagel Isabel, Johnson Anne B, Terry Robert D. Studies on brain biopsies of patients with Huntington's chorea [J]. J Neuropathol Exp Neurol, 1974, 33(2): 308-332.[16] Goebel Hans H, Heipertz Rainald, Scholz Wolfgang, et al. Juvenile Huntington chorea Clinical, ultrastructural, and biochemical studies [J]. Neurology, 1978, 28(1): 23-23.[17] Carios Portera-Cailliau, John C Hedreen, Donald L Price, et al. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models [J]. J Neurosci, 1995, 15(5): 3775-3787.[18] Squitieri Ferdinando, Falleni Alessandra, Cannella Milena, et al. Abnormal morphology of peripheral cell tissues from patients with Huntington disease [J]. J Neural Transm, 2010, 117(1): 77-83.[19] Squitieri Ferdinando, Cannella Milena, Sgarbi Gianluca, et al. Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation [J]. Mech Ageing Dev, 2006, 127(2): 217-220.[20] Costa Veronica, Giacomello Marta, Hudec Roman, et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli [J]. EMBO Mol Med, 2010, 2(12): 490-503.[21] Song Wen-jun, Chen Jin, Petrilli Alejandra, et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity [J]. Nat Med, 2011, 17(3): 377-382.[22] Kim Jinho, Moody Jennifer P, Edgerly Christina K, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease [J]. Hum Mol Genet, 2010, 19(20): 3919-3935.[23] Shirendeb Ulziibat, Reddy Arubala P, Manczak Maria, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage [J]. Hum Mol Genet, 2011, 20(7): 1438-1455.[24] G M Cereghetti, A Stangherlin, O Martins De Brito, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria [J]. Proceed National Acade Sciences, 2008, 105(41): 15803-15808.[25] Frezza Christian, Cipolat Sara, Martins De Brito Olga, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion [J]. Cell, 2006, 126(1): 177-189.[26] Costa Veronica, Scorrano Luca. Shaping the role of mitochondria in the pathogenesis of Huntington's disease [J]. EMBO J, 2012, 31(8): 1853-1864.[27] Germain Marc, Mathai Jaigi P, Mcbride Heidi M, et al. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis [J]. EMBO J, 2005, 24(8): 1546-1556.[28] Wang Hong-min, Lim Precious J, Karbowski Mariusz, et al. Effects of overexpression of huntingtin proteins on mitochondrial integrity [J]. Hum Mol Genet, 2009, 18(4): 737-752.[29] Chen Hsiuchen, Detmer Scott A, Ewald Andrew J, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J]. J Cell Biol, 2003, 160(2): 189-200.[30] Napoli Eleonora, Wong Sarah, Hung Connie, et al. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease [J]. Hum Mol Genet, 2013, 22(5): 989-1004.[31] L Djousse, B Knowlton, La Cupples, et al. Weight loss in early stage of Huntington’s disease [J]. Neurology, 2002, 59(9): 1325-1330.[32] A Antonini, K L Leenders, R Spiegel, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease [J]. Brain, 1996, 119(6): 2085-2095.[33] Jenkins Bruce G, Koroshetz Walter J, Beal M Flint, et al. Evidence for irnnairment of energy metabofism in vivo in Huntington's disease using localized 1H NMR spectroscopy [J]. Neurology, 1993, 43(12): 2689-2689.[34] Lodi R, Schapira Ahv, Manners D, et al. Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy [J]. Ann Neurol, 2000, 48(1): 72-76.[35] Saft Carsten, Zange Jochen, Andrich Jürgen, et al. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease [J]. Movement disorders, 2005, 20(6): 674-679.[36] Seong Ihn Sik, Ivanova Elena, Lee Jong-Min, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism [J]. Hum Mol Genet, 2005, 14(19): 2871-2880.[37] Browne Susan E, Ferrante Robert J, Beal M Flint. Oxidative stress in Huntington's disease [J]. Brain Pathology, 1999, 9(1): 147-163.[38] Van Der Burg Jorien Mm, Bacos Karl, Wood Nigel I, et al. Increased metabolism in the R6/2 mouse model of Huntington’s disease [J]. Neurobiol Dis, 2008, 29(1): 41-51.[39] K L Leenders, Rsj Frackowiak, N Quinn, et al. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography [J]. Movement disorders, 1986, 1(1): 69-77.[40] Parker William Davis, Boyson Sally J, Luder Anthony S, et al. Evidence for a defect in NADH ubiquinone oxidoreductase (complex I) in Huntington's disease [J]. Neurology, 1990, 40(8): 1231-1231.[41] Browne Susan E, Bowling Allen C, Macgarvey Usha, et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia [J]. Ann Neurol, 1997, 41(5): 646-653.[42] Arenas Joaquín, Campos Yolanda, Ribacoba René, et al. Complex I defect in muscle from patients with Huntington's disease [J]. Ann Neurol, 1998, 43(3): 397-400.[43] Brennan William A, Bird Edward D, Aprille June R. Regional mitochondrial respiratory activity in Huntington's disease brain [J]. J Neurochem, 1985, 44(6): 1948-1950.[44] M Gu, M T Gash, V M Mann, et al. Mitochondrial defect in Huntington's disease caudate nucleus [J]. Ann Neurol, 1996, 39(3): 385-389.[45] Benchoua Alexandra, Trioulier Yael, Zala Diana, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin [J]. Mol Biol Cell, 2006, 17(4): 1652-1663.[46] S J Tabrizi, J Workman, P E Hart, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse [J]. Ann Neurol, 2000, 47(1): 80-86.[47] Lin Jiandie, Handschin Christoph, Spiegelman Bruce M. Metabolic control through the PGC-1 family of transcription coactivators [J]. Cell Metab, 2005, 1(6): 361-370.[48] P Puigserver. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α [J]. Int J Obes, 2005, 29: S5-S9.[49] Yoon J Cliff, Puigserver Pere, Chen Guoxun, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 [J]. Nature, 2001, 413(6852): 131-138.[50] Cui Li-bin, Jeong Hyunkyung, Borovecki Fran, et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration [J]. Cell, 2006, 127(1): 59-69.[51] Weydt Patrick, Pineda Victor V, Torrence Anne E, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration [J]. Cell Metab, 2006, 4(5): 349-362.[52] Chaturvedi Rajnish K, Adhihetty Peter, Shukla Shubha, et al. Impaired PGC-1α function in muscle in Huntington's disease [J]. Hum Mol Genet, 2009, 18(16): 3048-3065.[53] Johri Ashu, Starkov Anatoly A, Chandra Abhishek, et al. Truncated peroxisome proliferator-activated receptor-γ coactivator 1α splice variant is severely altered in huntington’s disease [J]. Neurodegener Dis, 2011, 8(6): 496-503.[54] Taherzadeh-Fard Elahe, Saft Carsten, Andrich Jürgen, et al. PGC-1alpha as modifier of onset age in Huntington disease [J]. Mol Neurodegener, 2009, 4:10.[55] Weydt Patrick, Soyal Selma M, Gellera Cinzia, et al. The gene coding for PGC-1α modifies age at onset in Huntington's disease [J]. Mol Neurodegener, 2009, 4: 3.[56] Rodgers Joseph T, Lerin Carlos, Haas Wilhelm, et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 [J]. Nature, 2005, 434(7029): 113-118.[57] Wu Zhi-dan, Huang Xue-ming, Feng Ya-jun, et al. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1α transcription and mitochondrial biogenesis in muscle cells [J]. Proceed National Academy Sciences, 2006, 103(39): 14379-14384.[58] Johri Ashu, Calingasan Noel Y, Hennessey Thomas M, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease [J]. Hum Mol Genet, 2012, 21(5): 1124-1137.[59] Brouillet Emmanuel, Jacquard Carine, Bizat Nicolas, et al. 3‐Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease [J]. J Neurochem, 2005, 95(6): 1521-1540.[60] Charvin Delphine, Vanhoutte Peter, Pagès Christiane, et al. Unraveling a role for dopamine in Huntington’s disease: the dual role of reactive oxygen species and D2 receptor stimulation [J]. Proc Natl Acad Sci USA, 2005, 102(34): 12218-12223.[61] Tang Tie-Shan, Chen Xi, Liu Jing, et al. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease [J]. J Neurosci, 2007, 27(30): 7899-7910.[62] Benchoua Alexandra, Trioulier Yael, Diguet Elsa, et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II [J]. Hum Mol Genet, 2008, 17(10): 1446-1456.[63] Choo Yeun Su, Johnson Gail Vw, Macdonald Marcy, et al. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release [J]. Hum Mol Genet, 2004, 13(14): 1407-1420.[64] Panov Alexander V, Gutekunst Claire-Anne, Leavitt Blair R, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines [J]. Nat Neurosci, 2002, 5(8): 731-736.[65] N Brustovetsky, R Lafrance, K J Purl, et al. Age‐dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington’s disease [J]. J Neurochem, 2005, 93(6): 1361-1370.[66] Wang Jiu-Qiang, Chen Qian, Wang Xian-hua, et al. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease [J]. J Biological Chemist, 2013, 288(5): 3070-3084.[67] Tang Tie-Shan, Tu Hui-ping, Chan Edmond Yw, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1, 4, 5) triphosphate receptor type 1 [J]. Neuron, 2003, 39(2): 227-239.[68] Fan Mannie My, Raymond Lynn A. N-Methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease [J]. Prog Neurobiol, 2007, 81(5): 272-293.[69] Stack Edward C, Ferrante Robert J. Huntington’s disease: progress and potential in the field [J]. Expert Opin Investig, 2007, 16(12):1933-1953.[70] Sun Ying, Savanenin Anneli, Reddy P Hemachandra, et al. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95 [J]. J Biol Chem, 2001, 276(27): 24713-24718.[71] Zeron Melinda M, Hansson Oskar, Chen Nansheng, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease [J]. Neuron, 2002, 33(6): 849-860.[72] Zeron Melinda M, Chen Nan-sheng, Moshaver Ali, et al. Mutant huntingtin enhances excitotoxic cell death [J]. Mol Cell Neurosci, 2001, 17(1): 41-53.[73] Deckel A Wallace, Gordinier Ava, Nuttal Diane, et al. Reduced activity and protein expression of NOS in R6/2 HD transgenic mice: effects of L-NAME on symptom progression [J]. Brain Res, 2001, 919(1): 70-81.[74] Pérez-Severiano Francisca, Escalante Bruno, Vergara Paula, et al. Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington’s disease mutation [J]. Brain Res, 2002, 951(1): 36-42.[75] Santamaría Abel, Pérez-Severiano Francisca, Rodríguez-Martínez Erika, et al. Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington’s disease [J]. Neurochem Res, 2001, 26(4): 419-424.[76] Rebec George V, Barton Scott J, Ennis Michelle D. Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene [J]. J Neurosci, 2002, 22(2): RC202.[77] Pérez-Severiano Francisca, Salvatierra-Sánchez Raquel, Rodriguez-Pérez Mayra, et al. S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits [J]. Eur J Pharmacol, 2004, 489(3): 197-202.[78] S J Tabrizi, M W J Cleeter, J Xuereb, et al. Biochemical abnormalities and excitotoxicity in Huntington’s disease brain [J]. Ann Neurol, 1999, 45(1): 25-32.[79] Alam Zafar I, Halliwell Barry, Jenner Peter. No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington’s disease [J]. J Neurochem, 2000, 75(2): 840-846.[80] Chen Chiung-mei, Wu Yih-ru, Cheng Mei-ling, et al. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients [J]. Biochem Biophys Res Commun, 2007, 359(2): 335-340.[81] Sadagurski Marianna, Cheng Zhi-yong, Rozzo Aldo, et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease [J]. J Clin Invest, 2011, 121(10): 4070-4081.[82] Valencia Antonio, Sapp Ellen, Kimm Jeffrey S, et al. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington’s disease [J]. Hum Mol Genet, 2013, 22(6): 1112-1131.[83] Sawa Akira, Wiegand Gordon W, Cooper Jillian, et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization [J]. Nat Med, 1999, 5(10): 1194-1198.[84] Ciammola A, Sassone J, Alberti L, et al. Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington’s disease subjects [J]. Cell Death & Differentiation, 2006, 13(12): 2068-2078.[85] Toshiyuki Miyashita, Reed John C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene [J]. Cell, 1995, 80(2): 293-299.[86] Polyak Kornelia, Xia Yong, Zweier Jay L, et al. A model for p53-induced apoptosis [J]. Nature, 1997, 389(6648): 300-305.[87] Bae Byoung-Il, Xu Hong, Igarashi Shuichi, et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease [J]. Neuron, 2005, 47(1): 29-41.[88] Tait Stephen Wg, Green Douglas R. Mitochondria and cell death: outer membrane permeabilization and beyond [J]. Nature Reviews Molecular Cell Biology, 2010, 11(9): 621-632.[89] Karbowski Mariusz, Lee Yang-Ja, Gaume Brigitte, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis [J]. J Cell Biol, 2002, 159(6): 931-938.[90] Brooks Craig, Wei Qing-qing, Feng Le-ping, et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins [J]. Proceed National Acad Sciences, 2007, 104(28): 11649-11654.[91] Berman Sarah B, Chen Ying-Bei, Qi Bing, et al. Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons [J]. J Cell Biol, 2009, 184(5): 707-719.[92] Crompton Martin, Virji Sukaina, Doyle Veronica, et al. The mitochondrial permeability transition pore and its role in cell death [J]. Biochem J, 1999, 341(Pt 2): 233-249.[93] Scorrano Luca, Oakes Scott A, Opferman Joseph T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis [J]. Science, 2003, 300(5616): 135-139.[94] Gizatullina Zemfira Z, Lindenberg Katrin S, Harjes Phoebe, et al. Low stability of Huntington muscle mitochondria against Ca2+ in R6/2 mice [J]. Ann Neurol, 2006, 59(2): 407-411.[95] Fernandes Herman B, Baimbridge Kenneth G, Church John, et al. Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington’s disease [J]. J Neurosci, 2007, 27(50): 13614-13623.[96] Zeron Melinda M, Fernandes Herman B, Krebs Claudia, et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease [J]. Mol Cell Neurosci, 2004, 25(3): 469-479.[97] Johri Ashu, Chandra Abhishek, Flint Beal M. PGC-1α, mitochondrial dysfunction and huntington’s disease [J]. Free Radic Biol Med, 2013, 2013, 62:37-46.[98] Tang Tie-Shan, Guo Cai-xia, Wang Hong-yu, et al. Neuroprotective effects of inositol 1, 4, 5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model [J]. J Neurosci, 2009, 29(5): 1257-1266.[99] Tang Tie-Shan, Slow Elizabeth, Lupu Vitalie, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease [J]. Proc Natl Acad Sci USA, 2005, 102(7): 2602-2607. |
[1] | 甄艳杰, 郭童林, 赵雨薇, 沈丽霞. 植物雌激素介导线粒体途径对阿尔茨海默病神经保护作用的研究进展[J]. 神经药理学报, 2020, 10(1): 40-46. |
[2] | 朱东海,林娟,郭海彪,李楚源. 脑心清片对脂多糖诱导的BV-2 细胞的抗炎及抗凋亡作用[J]. 神经药理学报, 2018, 8(2): 37-37. |
[3] | 禹文峰,李成朋,韩飞,官志忠. 硫辛酸抑制AIF 介导的非Caspase 凋亡通路对多巴胺能神经元的保护机制[J]. 神经药理学报, 2018, 8(2): 40-40. |
[4] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[5] | 王明洋. 线粒体质量控制在神经系统疾病中的变化[J]. 神经药理学报, 2018, 8(2): 75-75. |
[6] | 张丽娜,张欣,薛娟,张丹参. 中药对中枢神经退行性疾病信号通路影响的研究进展[J]. 神经药理学报, 2017, 7(3): 33-42. |
[7] | 钟佳宏,汪海涛,徐江平. α - 突触核蛋白与帕金森病[J]. 神经药理学报, 2017, 7(2): 62-62. |
[8] | 陈佳佳,冯红芳,钟佳宏,邹征强,汪海涛,徐江平. PDE4抑制剂FCPR16对局灶性脑缺血再灌注损伤大鼠的保护作用[J]. 神经药理学报, 2017, 7(2): 68-68. |
[9] | 连雯雯,刘艾林*,杜冠华. DL0410改善D-半乳糖致衰老小鼠认知功能的线粒体保护机制研究[J]. 神经药理学报, 2017, 7(2): 73-73. |
[10] | 何莲子. 淫羊藿次苷Ⅱ抗鹅膏蕈氨酸诱导的大鼠学习记忆减退及机制研究[J]. 神经药理学报, 2017, 7(2): 46-46. |
[11] | 娄钰霞,张钊,王真真,姜懿纳,张毅,李林,陈乃宏. 帕金森病相关基因DJ-1 与氧化应激[J]. 神经药理学报, 2016, 6(1): 58-64. |
[12] | 胡宝玲, 郭春燕. 芍药苷神经保护作用机制的研究进展[J]. 神经药理学报, 2015, 5(6): 51-56. |
[13] | 杨文亮,宋玉,赵灿灿,谢欣梅,庞晓斌, 杜冠华. 黄芪甲苷对PC12细胞缺糖缺氧损伤的保护作用[J]. 神经药理学报, 2015, 5(1): 10-14. |
[14] | 颜娟,郑茂东. 左卡尼汀的中枢神经系统保护作用[J]. 神经药理学报, 2015, 5(1): 45-50. |
[15] | 赵薇, 李方江, 王树. 脑缺血损伤的保护作用机制研究进展[J]. 神经药理学报, 2014, 4(6): 55-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||