神经药理学报 ›› 2015, Vol. 5 ›› Issue (2): 54-64.
• 综述 • 上一篇
钟明,沈丽霞
出版日期:
2015-04-26
发布日期:
2015-07-06
通讯作者:
沈丽霞,女,教授,博士,研究生导师;研究方向:神经药理学;Tel:+86-0313-4029305,E-mail: shenlixiacn@163.com
作者简介:
钟明,女,硕士研究生;研究方向:神经药理学;Tel: +86-0313-4029305,E-mail: zmgz1108@126.com
基金资助:
河北省自然科学基金资助项目(No.H2012405016),河北省教育厅资助项目(No.Z2013069),河北北方学院创新人才培养基金(CXRC1325)
ZHONG Ming, SHEN Li-Xia
Online:
2015-04-26
Published:
2015-07-06
Contact:
沈丽霞,女,教授,博士,研究生导师;研究方向:神经药理学;Tel:+86-0313-4029305,E-mail: shenlixiacn@163.com
About author:
钟明,女,硕士研究生;研究方向:神经药理学;Tel: +86-0313-4029305,E-mail: zmgz1108@126.com
Supported by:
河北省自然科学基金资助项目(No.H2012405016),河北省教育厅资助项目(No.Z2013069),河北北方学院创新人才培养基金(CXRC1325)
摘要: 阿尔茨海默病(Alzheimer's disease,AD)是一种中枢神经系统退行性疾病,主要表现为β-淀粉样蛋白(Beta amyloid protein,Aβ)的沉积和神经纤维的缠结,而且女性的发病率明显高于男性。目前认为AD的发生和发展与雌激素的减少密切相关,然而,雌激素的神经保护作用机制尚不明确。研究发现雌激素可与其受体结合,调节Trx-1和Ask-1的活性,抑制死亡结构域相关蛋白(Death domain associate protein,Daxx)向细胞质转移,阻断Ask-1/JNK信号转导途径从而发挥抗氧化应激和凋亡;激活MAPK/ERK信号途径,促进淀粉前体蛋白(Amyloid precursor protein,APP)的非淀粉源途径,阻止Aβ的形成;此外,研究还发现被活化的雌激素受体与小窝蛋白相互作用,激活代谢型谷氨酸受体(metabotropic glutamate receptors,mGluRs),促进环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)磷酸化;介导第二信使对抗谷氨酸的神经兴奋毒性而发挥神经保护作用。本文将对雌激素发挥神经保护作用的具体机制进行总结分析,为AD的预防和治疗提供一定的理论基础。
钟明,沈丽霞. 雌激素神经元保护作用的相关机制[J]. 神经药理学报, 2015, 5(2): 54-64.
ZHONG Ming, SHEN Li-Xia. Study of the Mechanism of Estrogen on Neuroprotective Effect[J]. Acta Neuropharmacologica, 2015, 5(2): 54-64.
[1] Janicki S C, Park N, Cheng R, et al. Estrogen receptor α variants affect age at onset of Alzheimer’s disease in a multiethnic female cohort[J]. Dementia Geriatric Cognitive Disorders, 2014, 38(3-4): 200-213 .[2] Pike C J, Carroll J C, Rosario E R, et al. Protective actions of sex steroid hormones in Alzheimer’s disease[J]. Frontiers Neuroendocrinol, 2009, 30(2): 239-258.[3] Emily R Rosario, Lilly Chang, Elizabeth H Head, et al. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer's disease[J]. Neurobiology Aging, 2011, 32(4): 604-613.[4] Prelevic G M, Kocjan T, Markou A. Hormone replacement therapy in postmenopausal women[J]. Minerva Endocrinol, 2005, 30(1): 27-36.[5] Sally A Shumaker, Claudine Legault, Lewis Kuller, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study[J]. JAMA, 2004, 291(24): 2947-2958.[6] Karyn M Frick. Estrogens and age-related memory decline in rodents: what have we learned and where do we go from here?[J]. Horm Behav, 2009, 55(1): 2-23.[7] Zandi P P, Carlson M C, Plassman B L, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study[J]. JAMA, 2002, 288(17): 2123-2129.[8] Whitney Wharton, Laura D Baker, Gleason E Gleason, et al. Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer's disease: results of a randomized controlled trial[J]. J Alzheimer's Dis, 2011, 26(3): 495-505.[9] Frederick Naftolin, Dolores Malaspina. Estrogen, estrogen treatment and the post-reproductive woman's brain[J]. Maturitas, 2007, 57(1): 23-26.[10] Yasushi Hojo, Gen Murakami, Hideo Mukai, et al. Estrogen synthesis in the brain-role in synaptic plasticity and memory[J]. Mol Cell Endocrinol, 2008, 290(1): 31-43.[11] Daye Cheng, Liang Bin, Hao Yi-wen, et al. Estrogen receptor α gene polymorphisms and risk of Alzheimer’s disease: evidence from a meta-analysis[J]. Clin Interv Aging, 2014, 9: 1031.[12] Hestiantoro A, Swaab D F. Changes in estrogen receptor-alpha and -beta in the infundihular nucleus of the human hypothalamus are related to the occurrence of Alzheimer's disease neuropathology[J]. Clin Endocrinol Metab, 2004, 89:1912-1925.[13] Tatjana A Ishunina, David F Fischer, Dick F Swaab. Estrogen receptor α and its splice variants in the hippocampus in aging and Alzheimer's disease[J]. Neurobiol Aging, 2007, 28(11): 1670-1681. [14] Janine Prange-Kiel, Uwe Wehrenberg, Hubertus Jarry, et al. Para/autocrine regulation of estrogen receptors in hippocampal neurons[J]. Hippocampus, 2003, 13(2): 226-234.[15] H G, R F, J P R, et al. Structural basis for the deactivation of the estrogen-related receptor gamma by diethylstilbestrol or 4-hydroxytamoxifen and determinants of selectivity[J]. J Biological Chemistry, 2004, 279(32):33639-33646.[16] Grove-Strawser D, Boulware M I, Mermelstein P G. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons[J]. Neuroscience, 2010, 170(4): 1045-1055.[17] Marissa I Boulware, Jason P Weick, Bryan R Becklund, et al. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein[J]. J Neuroscience, 2005, 25(20): 5066-5078.[18] Jiang Shan-tong, Li Yan-fang, Zhang Xian, et al. Trafficking regulation of proteins in Alzheimer's disease[J]. Molecular Neurodegeneration, 2014, 9: 6.[19] Castello M A, Soriano S. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis[J]. Ageing Res Reviews, 2014, 13: 10-12.[20] Shi Chun, Na Ning, Zhu Xiao-ming, et al. Estrogenic effect of ginsenoside Rg1 on APP processing in post-menopausal platelets[J]. Platelets, 2013, 24(1): 51-62.[21] Silvia Mandel, Tamar Amit, Lydia Reznichenko, et al. Green tea catechins as brain- permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders[J]. Molecular Nutrition & Food Research, 2006, 50(2): 229-234.[22] Yamaguchi H, Yamazaki T, Lemere C A, et al. Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer's disease. An immunoelectron microscopic study[J]. Am J Pathol, 1992, 141(1): 249.[23] Skovronsky D M, Lee V M Y, Praticò D. Amyloid precursor protein and amyloid β peptide in human platelets. role of cyclooxygenase and protein kinase C[J]. J Biological Chemistry, 2001, 276(20): 17036-17043.[24] Urmoneit B, Prikulis I, Wihl G, et al. Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy[J]. Lab Invest, 1997, 77(2): 157-166.[25] Zlokovic B V, Martel C L, Mackic J B, et al. Brain uptake of circulating apolipoproteins J and E complexed to Alzheimer′ s amyloid β[J]. Biochem Biophys Res Commun, 1994, 205(2): 1431-1437.[26] Takashi Kasai, Takahiko Tokuda, Mark Taylor, et al. Correlation of Aβ oligomer levels in matched cerebrospinal fluid and serum samples[J]. Neuroscience Letters, 2013, 551: 17-22.[27] Laila Abdullah, Cheryl Luis, Daniel Paris, et al. Serum Aβ levels as predictors of conversion to mild cognitive impairment/Alzheimer disease in an ADAPT subcohort[J]. Molecular Medicine, 2009, 15(11-12): 432.[28] Li Qiao-xin, Stephanie J Fuller, Konrad Beyreuther, et al. The amyloid precursor protein of Alzheimer disease in human brain and blood[J]. J Leukoc Biol, 1999, 66(4): 567-574.[29] Laura Moro, Stefania Reineri, Daniela Piranda, et al. Nongenomic effects of 17β-estradiol in human platelets: potentiation of thrombin-induced aggregation through estrogen receptor β and Src kinase[J]. Blood, 2005, 105(1): 115-121.[30] Hannah L Bell, Monika Gooz. ADAM-17 is activated by the mitogenic protein kinase ERK in a model of kidney fibrosis[J]. Am J Med Sci, 2010, 339(2): 105-107.[31] Shi Chun, Zhu Xiao-ming, Wang Ji-sheng, et al. Estrogen receptor α promotes non-amyloidogenic processing of platelet amyloid precursor protein via the MAPK/ERK pathway[J]. J Steroid Biochem Mol Biology, 2014, 144: 280-285.[32] Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice[J]. J Neuroscience, 2005, 25(38): 8807-8814.[33] Shi C, Zheng D, Fang L, et al. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt[J]. BBA General Subjects, 2012, 1820(4): 453-460.[34] Shi Chun, Wu Feng-ming, Xu Jie, et al. Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway[J]. Neurochem Int, 2011, 59(1): 59-64.[35] Shi Chun, Zheng Dong-dan, Wu Feng-ming, et al. The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3β pathway mediates bilobalide-induced reduction in amyloid β-peptide[J]. Neurochemical Research, 2012, 37(2): 298-306.[36] Vauzour D, Vafeiadou K, Rodriguez-Mateos A, et al. The neuroprotective potential of flavonoids: a multiplicity of effects[J]. Genes & nNutrition, 2008, 3(3-4): 115-126.[37] Arjan Scheepens, Kee Tan, James W Paxton. Improving the oral bioavailability of beneficial polyphenols through designed synergies[J]. Genes & Nutrition, 2010, 5(1): 75-87.[38] Tsutomu Odani, Hisauuki Tanizawa, Yoshio Takino. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in the rat[J]. Chemical & Pharmaceutical Bulletin, 1983, 31(1): 292-298.[39] Rui W, Yan-Nan L I, Guang-Ji W, et al. Neuroprotective effects and brain transport of ginsenoside Rg1[J]. Chinese J Natural Medicines, 2009, 7(4): 315-320.[40] Gazulla J, Cavero-Nagore M. Glutamate and Alzheimer's disease[J]. Rev Neurol, 2005, 42(7): 427-432.[41] Crescenzi R, DeBrosse C, Nanga R P R, et al. In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy[J]. Neuroimage, 2014, 101: 185-192.[42] Burbaeva G S, Boksha I S, Tereshkina E B, et al. A role of glutamate decarboxylase in Alzheimer's disease[J]. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova/Ministerstvo zdravookhraneniia i meditsinskoi promyshlennosti Rossiiskoi Federatsii, Vserossiiskoe obshchestvo nevrologov [i] Vserossiiskoe obshchestvo psikhiatrov, 2013, 114(4): 68-72.[43] Ribeiro F M, DeVries R A, Hamilton A, et al. Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington's disease[J]. Human molecular genetics, 2014, 23(8): 2030-2042.[44] Jamaica R Rettberg, Yao Jia, Roberta Diaz Brinton. Estrogen: a master regulator of bioenergetic systems in the brain and body[J]. Front Neuroendocrinol, 2014, 35(1): 8-30.[45] Zhao Li-qin, Robert Brinton. Estrogen receptor α and β differentially regulate intracellular Ca 2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons[J]. Brain research, 2007, 1172: 48-59.[46] Kajta M, Domin H, Grynkiewicz G, et al. Genistein inhibits glutamate-induced apoptotic processes in primary neuronal cell cultures: An involvement of aryl hydrocarbon receptor and estrogen receptor/glycogen synthase kinase-3β intracellular signaling pathway[J]. Neuroscience, 2007, 145(2): 592-604.[47] Aamodt S M, Constantine-Paton M. The role of neural activity in synaptic development and its implications for adult brain function[J]. Advances Neurology, 1998, 79: 133-144.[48] Bliss T V P, Collingridge G L. A synaptic model of memory: long-term potentiation in the hippocampus[J]. Nature, 1993, 361(6407): 31-39.[49] 潘静,陈生弟. NMDA 受体与神经退行性疾病的关系[J]. 上海交通大 学学报医学版,2009,29(1):98-101.[50] Damani N Bryant, Daniel M Dorsa. Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity[J]. Neuroscience, 2010, 170(4): 1261-1269.[51] Li Shao-min, Jin Ming, Thomas Koeglsperger, et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors[J]. J Neuroscience, 2011, 31(18): 6627-6638.[52] Jorge J Palop, Lennart Mucke. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks[J]. Nature Neuroscience, 2010, 13(7): 812-818.[53] Hardingham G E, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders[J]. Nature Reviews Neuroscience, 2010, 11(10): 682-696.[54] Okamoto S, Pouladi M A, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin[J]. Nature medicine, 2009, 15(12): 1407-1413.[55] Maria Talantova, Sara Sanz-Blasco, Zhang Xiao-fei, et al. Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss[J]. Proceedings National Academy Sciences USA, 2013, 110(27). [56] Al-Sweidi S, Morissette M, Di Paolo T. Effect of oestrogen receptors on brain NMDA receptors of 1-Methyl-4-Phenyl-1, 2, 3, 6-tetrahydropyridine mice[J]. J Neuroendocrinology, 2012, 24(11): 1375-1385.[57] Cardona-Gomez G P, DonCarlos L, Garcia-Segura L M. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain[J]. Neuroscience, 2000, 99(4): 751-760.[58] Stefan Kahlert, Simone Nuedling, Martin van Eickels, et al. Estrogen receptor α rapidly activates the IGF-1 receptor pathway[J]. J Biological Chemistry, 2000, 275(24): 18447-18453.[59] Mahnaz Razandi, Ali Pedram, Steven T Park, et al. Proxima events in signaling by plasma membrane estrogen receptors[J]. J Biological Chemistry, 2003, 278(4): 2701-2712[60] Mermelstein P G. Membrane-localised oestrogen receptor α and β influence neuronal activity through activation of metabotropic glutamate receptors[J]. J Neuroendocrinology, 2009, 21(4): 257-262.[61] John Meitzen, Paul G Mermelstein. Estrogen receptors stimulate brain region specific metabotropic glutamate receptors to rapidly initiate signal transduction pathways[J]. Journal of chemical neuroanatomy, 2011, 42(4): 236-241.[62] Eun Sang Choe, John Q Wang. Group I metabotropic glutamate receptor activation increases phosphorylation of cAMP response element-binding protein, Elk-1, and extracellular signal-regulated kinases in rat dorsal striatum[J]. Brain Res Mol, 2001, 94(1): 75-84.[63] Helen K Warwick, Stefan R Nahorski, R A John Challiss. Group I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to cyclic AMP response element binding protein (CREB) through a common Ca2+ and protein kinase C-dependent pathway[J]. J Neurochemistry, 2005, 93(1): 232-245.[64] Mermelstein P G, Becker J B, Surmeier D J. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor[J]. J Neuroscience, 1996, 16(2): 595-604.[65] Chaban V V, Mayer E A, Ennes H S, et al. Estradiol inhibits ATP-induced intracellular calcium concentration increase in dorsal root ganglia neurons[J]. Neuroscience, 2003, 118(4): 941-948.[66] Lee D Y, Chai Y G, Lee E B, et al. 17 Beta-estradiol inhibits high-voltage-activated calcium channel currents in rat sensory neurons via a non-genomic mechanism[J]. Life Sciences, 2002, 70(17): 2047-2059.[67] Eunsook Lee, Marta Sidoryk-Wêgrzynowicz, Wang Ning, et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes[J]. J Biological Chemistry, 2012, 287(32): 26817-26828.[68] Laura Mateos, Torbjorn Persson, Shirin Kathozi, et al. Estrogen protects against amyloid-β toxicity by estrogen receptor α-mediated inhibition of Daxx translocation[J]. Neuroscience Lett, 2012, 506(2): 245-250.[69] Ryuta Muromoto. Death domain-associated protein (DAXX)-mediated regulation of transcription and cell death[J]. J Pharmaceutical Society Japan, 2011, 132(9): 979-984.[70] Yun-Suk Lee, Yogesh Dayma, Min-Young Park, et al. Daxx is a key downstream component of receptor interacting protein kinase 3 mediating retinal ischemic cell death[J]. FEBS Lett, 2013, 587(3): 266-271.[71] Akterin S, Cowburn R F, Miranda-Vizuete A, et al. Involvement of glutaredoxin-1 and thioredoxin-1 in β-amyloid toxicity and Alzheimer's disease[J]. Cell Death & Differentiation, 2005, 13(9): 1454-1465.[72] Ebrahimian T, He Y, Schiffrin E L, et al. Differential regulation of thioredoxin and NAD (P) H oxidase by angiotensin II in male and female mice[J]. J Hypertension, 2007, 25(6): 1263-1271.[73] Ejima K, Nanri H, Araki M, et al. 17beta-estradiol induces protein thiol/disulfide oxidoreductases and protects cultured bovine aortic endothelial cells from oxidative stress[J]. J European Endocrinology, 1999, 140(6): 608-613.[74] Rao A K, Ziegler Y S, McLeod I X, et al. Thioredoxin and thioredoxin reductase influence estrogen receptor α-mediated gene expression in human breast cancer cells[J]. J Mol Endocrinol, 2009, 43(6): 251-261.[75] Sang-oh Yoon, Soo-jin Park, An-sik Chung. Selenite inhibits Aapoptosis via activation of the PI3-K/Akt pathway[J]. Annals New York Academy Sciences, 2002, 973(1): 221-223.[76] Kurzchalia T V, Dupree P, Parton R G, et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles[J]. J Cell Biology, 1992, 118(5): 1003-1014.[77] Karen G Rothberg, John E Heuser, William C Donzell, et al. Caveolin, a protein component of caveolae membrane coats[J]. Cell, 1992, 68(4): 673-682.[78] Braun J E A, Madison D V. A novel SNAP25-caveolin complex correlates with the onset of persistent synaptic potentiation[J]. J Neuroscience, 2000, 20(16): 5997-6006.[79] Sophie B Gaudreault, Jean-Francois Blain, Jean-Philippe Gratton, et al. A role for caveolin-1 in post-injury reactive neuronal plasticity[J]. J Neurochemistry, 2005, 92(4): 831-839.[80] Marissa I Boulware, Holly Kordasiewicz, Paul G Mermelstein. Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons[J]. J Neuroscience, 2007, 27(37): 9941-9950.[81] Wanda M Krajewska, Izabela Maslowska. Caveolins: structure and function in signal transduction[J]. Cell Mol Biol Lett, 2004, 9(2): 195-220.[82] Terence M Williams, Michael P Lisanti. The caveolin proteins[J]. Genome biology, 2004, 5(3): 214-214.[83] Pyo Kim H, Young Lee J, Kim Jeong J, et al. Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor α localized in caveolae[J]. Biochemical Biophysical Res Communications, 1999, 263(1): 257-262.[84] Ken L Chambliss, Ivan S Yuhanna, Chieko Mineo, et al. Estrogen receptor α and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae[J]. Circulation Res, 2000, 87(11): e44-e52.[85] Fielding C J, Fielding P E. Cholesterol and caveolae: structural and functional relationships[J]. BBA Molecular Cell Biology Lipids, 2000, 1529(1): 210-222.[86] Steven Bodovitz, William L Klein. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein[J]. J Biol Chem, 1996, 271(8): 4436-4440.[87] Tsuneya Ikezu, Bruce D Trapp, Kenneth S Song, et al. Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein[J]. J Biol Chem, 1998, 273(17):10485-10495.[88] Kojro E, Gimpl G, Lammich S, et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10[J]. Proc Natl Acad Sci USA, 2001, 98(10): 5815-5820.[89] Seung-Jae Lee, Udaya Liyanage, Perry E Bickel, et al. A detergent-insoluble membrance compartment contains Aβ in vivo[J]. Nature medicine, 1998, 4(6): 730-734.[90] Mikael Simons, Patrick Keller, Bart De Strooper, et al. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neuron[J]. Proc Natl Acad Sci USA, 1998, 95(11): 6460-6464.[91] Sophie B Gaudreault, Doris Dea, Judes Poirier. Increased caveolin-1 expression in Alzheimer’s disease brain[J]. Neurobiol Aging, 2004, 25(6): 753-759.[92] Mahnaz Razandi, Gordon Alton, Ali Pedram, et al. Identification of a structural determinant necessary for the localization and function of estrogen receptor α at the plasma membrane[J]. Molecular Cellular Biology, 2003, 23(5): 1633-1646.[93] Wang X, Feng S, Zhang H, et al. RNA inference-mediated caveolin-1 down-regulation decrease estrogen receptor alpha (ERα) signaling in human mammary epithelial cells[J]. Molecular Biology Reports, 2011, 38(2): 761-768.[94] Kenneth D R Setchell. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones[J]. Am J Clin Nutr, 1998, 68(6): 1333S-1346S. |
[1] | 谢彬, 黄志源, 林多朵, 杨福龙, 谢奕彬. 针药结合干预阿尔茨海默病抑郁症状效果分析[J]. 神经药理学报, 2020, 10(5): 5-8. |
[2] | 赵雨薇, 甄艳杰, 戴月英, 沈丽霞. 槲皮素对阿尔茨海默症神经保护作用研究[J]. 神经药理学报, 2020, 10(5): 55-64. |
[3] | 海吉涛, 罗焕敏. 病原微生物与阿尔茨海默病相关性研究进展[J]. 神经药理学报, 2020, 10(4): 58-64. |
[4] | 杨旭华, 杜爽, 沈丽霞, 郝军荣. 阿尔茨海默病的药物治疗研究进展[J]. 神经药理学报, 2020, 10(3): 47-53. |
[5] | 甄艳杰, 郭童林, 赵雨薇, 沈丽霞. 植物雌激素介导线粒体途径对阿尔茨海默病神经保护作用的研究进展[J]. 神经药理学报, 2020, 10(1): 40-46. |
[6] | 杨琳,艾静. 脑源雌激素在阿尔茨海默病中的作用研究进展[J]. 神经药理学报, 2019, 9(5): 50-64. |
[7] | 张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(6): 9-20. |
[8] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[9] | 黄蕊,杨翠翠,张兰. 二苯乙烯苷对APP/PS1 双转基因小鼠学习记忆及突触可塑性的影响[J]. 神经药理学报, 2018, 8(2): 31-31. |
[10] | 雷曦,王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 基于快速老化模型小鼠SAMP8 的CA-30 抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(2): 50-50. |
[11] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[12] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[13] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[14] | 郭鹏,张巍. 阿尔茨海默病患者睡眠障碍及其与认知障碍关系的研究[J]. 神经药理学报, 2018, 8(2): 61-61. |
[15] | 连腾宏,李少武,余秋瑾,等. 阿尔茨海默病伴发嗅觉障碍的临床特点及静息态功能核磁共振成像的研究[J]. 神经药理学报, 2018, 8(2): 62-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||