• 综述 • 上一篇
杨琳,艾静
出版日期:
2019-10-26
发布日期:
2020-03-03
通讯作者:
艾静,女,博士,教授,博士生导师;研究方向:神经药理学;Tel:+86-0451-86671354,E-mail:azhrbmu@126.com
作者简介:
杨琳,女,硕士研究生;研究方向:神经药理学;E-mail:linyang52@163.com
基金资助:
YANG-Lin,AI-Jing
Online:
2019-10-26
Published:
2020-03-03
Contact:
艾静,女,博士,教授,博士生导师;研究方向:神经药理学;Tel:+86-0451-86671354,E-mail:azhrbmu@126.com
About author:
杨琳,女,硕士研究生;研究方向:神经药理学;E-mail:linyang52@163.com
Supported by:
摘要: 流行病学研究表明,绝经后女性阿尔茨海默病(Alzheimer’s disease,AD)的患病风险远高于男性。 大 量临床实验研究表明,女性绝经后脑源雌激素水平的下降与阿尔茨海默病的患病风险有关。 该文介绍了近年来 关于体内雌激素(尤其脑源雌激素)合成及代谢过程和作用机制、脑雌激素受体(estrogen receptors,ERs)、脑源 雌激素在调节认知功能中的作用以及脑源雌激素功能异常在 AD 中的作用的研究进展。
中图分类号:
杨琳,艾静. 脑源雌激素在阿尔茨海默病中的作用研究进展[J]. 神经药理学报, DOI: 10.3969/j.issn.2095-1396.2019.05.010.
YANG-Lin,AI-Jing. Research Progress of Brain-Derived Estrogen in Alzheimer’s Disease[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2019.05.010.
[1] Claire O'Brien. Auguste D and Alzheimer's disease [J]. Science, 1996, 273(5271): 28, [2] John Hardy. A hundred years of Alzheimer's disease research [J]. Neuron, 2006, 52(1): 3-13. [3] CA L, J H, JM S. Alzheimer's disease [J]. European J Neurology, 2018, 25(1):59-70. [4] Alzheimer's Disease International. World Alzheimer Report 2018 [J]. London, 2018. [5] 钟明,沈丽霞. 雌激素神经元保护作用的相关机制 [J]. 神经药理学报, 2015, 5(02):54-64. [6] Nebel R A, Aggarwal N T, Barnes L L, et al. Understanding the impact of sex and gender in Alzheimer's disease: A call to action [J]. Alzheimers Dement, 2018, 14(9):1171-1183. [7] Laure Carcaillon, Sylvie Brailly-Tabard, Marie-Laure Ancelin, et al. High plasma estradiol interacts with diabetes on risk of dementia in older postmenopausal women [J]. Neurology, 2014, 82(6):504-511. [8] Jose F Cascalheira, Sara S Joao, Sandra S Pinhancos, et al. Serum homocysteine: interplay with other circulating and genetic factors in association to Alzheimer's type dementia [J]. Clinical Biochemistry, 2009, 42(9):783-790. [9] Savolainen-Peltonen H, Rahkola-Soisalo P, Hoti F, et al. Use of postmenopausal hormone therapy and risk of Alzheimer's disease in Finland: nationwide case-control study [J]. BMJ (Clinical research ed), 2019, 364:l665. [10] Cui Jie, Shen Yong, Li Rena. Estrogen synthesis and signaling pathways during aging: from periphery to brain [J]. Trends Mol Med, 2013, 19(3):197-209. [11] Peter Schonknecht, Johannes Pantel, Klaus Klinga, et al. Reduced cerebrospinal fluid estradiol levels are associated with increased beta-amyloid levels in female patients with Alzheimer's disease [J]. Neurosci Lett, 2001, 307(2):122-124. [12] Yue Xu, Melissa Lu, Techie Lancaster, et al. Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer's disease animal model [J]. Proc Natl Acad Sci U S A, 2005, 102(52):19198-19203. [13] Maria F Rossetti, Maria Cambiasso, Allie Holschbach, et al. Oestrogens and progestagens: synthesis and action in the brain [J]. J Neuroendocrinology, 2016, 28(7):undefined. [14] Radwa Barakat, Oliver Oakley, Heehyen Kim, et al. Extra-gonadal sites of estrogen biosynthesis and function [J]. BMB Rep, 2016, 49(9):488-496. [15] Bulun S E, Lin Z, Zhao Hong, et al. Regulation of aromatase expression in breast cancer tissue [J]. Ann N Y Acad Sci, 2009, 1155:121-131. [16] Zhao Hong, Zhou Ling, Shangguan Junjie, et al. Aromatase expression and regulation in breast and endometrial cancer [J]. J Molecular Endocrinology, 2016, 57(1):R19-33. [17] Thierry D Charlier, Nobuhiro Harada, Jacques Balthazart, et al. Human and quail aromatase activity is rapidly and reversibly inhibited by phosphorylating conditions [J]. Endocrinology, 2011, 152(11):4199-4210. [18] Stephen G Hillier, Philippa F Whitelaw, Christopher D Smyth. Follicular oestrogen synthesis: the 'two-cell, two-gonadotrophin' model revisited [J]. Mol Cell Endocrinol, 1994, 100(1-2):51-54. [19] Reto Stricker, Raphael Eberhart, Marie-Christine Chevailler, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer [J]. Clin Chem Lab Med, 2006, 44(7):883-887. [20] Giatti S, Diviccaro S, Garcia-Segura L M, et al. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy [J]. J Neuroendocrinol, 2019, 31(6):e12736. [21] Pelletier G, Luu-The V, Labrie F. Immunocytochemical localization of type I 17 beta-hydroxysteroid dehydrogenase in the rat brain [J]. Brain Res, 1995, 704(2):233-239. [22] Tanja Spanic, Teja Fabjan, Gregor Majdic. Expression levels of mRNA for neurosteroidogenic enzymes 17β-HSD, 5α-reductase, 3α-HSD and cytochrome P450 aromatase in the fetal wild type and SF-1 knockout mouse brain [J]. Endocrine Research, 2015, 40(1):44-48. [23] Hojo Y, Hattori T A, Enami T, et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons [J]. Proc Natl Acad Sci U S A, 2004, 101(3):865-870. [24] Bogus Katarzyna, Palasz Artur, Aleksandra Suszka-?witek, et al. Chronic antipsychotic treatment modulates aromatase (CYP19A1) expression in the male rat brain [J]. J Molecular Neuroscience : MN, 2019, 68(2):311-317. [25] Carla Cisternas, Lucas Ezequiel Cabrera Zapata, Maria Angeles Arevalo, et al. Regulation of aromatase expression in the anterior amygdala of the developing mouse brain depends on ERbeta and sex chromosome complement [J]. Sci Rep, 2017, 7(1):5320. [26] Joshua Gatson, Simpkins J W, Kun Don Yi, et al. Aromatase is increased in astrocytes in the presence of elevated pressure [J]. Endocrinology, 2011, 152(1):207-213. [27] Josue G Yague, Inigo Azcoitia, Javier DeFelipe, et al. Aromatase expression in the normal and epileptic human hippocampus [J]. Brain Res, 2010, 1315:41-52. [28] Li R, Cui J, Shen Y. Brain sex matters: estrogen in cognition and Alzheimer's disease [J]. Mol Cell Endocrinol, 2014, 389(1-2):13-21. [29] Kancheva R, Hill M, Novak Z, et al. Neuroactive steroids in periphery and cerebrospinal fluid [J]. Neuroscience, 2011, 191:22-27. [30] Liu Ran, Yang Shao-hua. Window of opportunity: estrogen as a treatment for ischemic stroke [J]. Brain Research, 2013, 1514(undefined):83-90. [31] Caitlin Fujisawa, John J Castellot Jr. Matrix production and remodeling as therapeutic targets for uterine leiomyoma [J]. J Cell Communication and Signaling, 2014, 8(3):179-194. [32] Regina G Ziegler, Barbara J Fuhrman, Steven C Moore, et al. Epidemiologic studies of estrogen metabolism and breast cancer [J]. Steroids, 2015, 99(Pt A):67-75. [33] Davor Stanic, Sydney Dubois, Hui Kheng Chua, et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors [J]. PloS One, 2014, 9(3):e90451. [34] Melinda E Wilson, Jenne M Westberry, Amanda K Prewitt. Dynamic regulation of estrogen receptor-alpha gene expression in the brain: a role for promoter methylation? [J]. Front Neuroendocrinol, 2008, 29(3):375-385. [35] Sher-Wei Lim, Eric Nyam, Cho-Ya Hu, et al. Estrogen Receptor-alpha is Involved in Tamoxifen Neuroprotective Effects in a Traumatic Brain Injury Male Rat Model [J]. World Neurosurgery, 2018, 112:e278-e287. [36] Sudha Warrier Mitra, Elena Hoskin, Joel Yudkovitz, et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha [J]. Endocrinology, 2003, 144(5):2055-2067. [37] Anna Phan, Sarah Suschkov, Luke Molinaro, et al. Rapid increases in immature synapses parallel estrogen-induced hippocampal learning enhancements [J]. Proc Natl Acad Sci USA, 2015, 112(52):16018-16023. [38] Lucas Stetzik, Denis Ganshevsky, Michelle N Lende, et al. Inhibiting ERalpha expression in the medial amygdala increases prosocial behavior in male meadow voles (Microtus pennsylvanicus) [J]. Behav Brain Res, 2018, 351:42-48. [39] Marie Osterlund, George G J M Kuiper, Jan-Ake Gustafsson, et al. Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain [J]. Brain Research Molecular Brain Research, 1998, 54(1):175-180. [40] Wang Shao-fnag, Zhu Jun, Xu Tong-hui. 17beta-estradiol (E2) promotes growth and stability of new dendritic spines via estrogen receptor beta pathway in intact mouse cortex [J]. Brain Res Bull, 2018, 137:241-248. [41] Nakata M, Agmo A, Sagoshi S, et al. The Role of Estrogen Receptor beta (ERbeta) in the Establishment of Hierarchical Social Relationships in Male Mice [J]. Front Behav Neurosci, 2018, 12:245. [42] Maria M Hadjimarkou, Nandini Vasudevan. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior [J]. J Steroid Biochem Mol Biol, 2018, 176:57-64. [43] Hammond R, Nelson D, Gibbs R B. GPR30 co-localizes with cholinergic neurons in the basal forebrain and enhances potassium-stimulated acetylcholine release in the hippocampus [J]. Psychoneuroendocrinology, 2011, 36(2):182-192. [44] Eugen Brailoiu, Siok Le T Dun, G Cristina Brailoiu, et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system [J]. The J Endocrinology, 2007, 193(2):311-321. [45] Georgina G J Hazell, Song T Yao, James A Roper, et al. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues [J]. The Journal of endocrinology, 2009, 202(2):223-236. [46] Keith Akama, Louisa Thompson, Teresa A Milner, et al. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines [J]. J Biol Chem, 2013, 288(9):6438-6450. [47] Elizabeth Waters, Louisa Thompson, Parth Patel, et al. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus [J]. J Neurosci, 2015, 35(6):2384-2397. [48] Ye Zeng-you, Robert H Cudmore, David J Linden. Estrogen-dependent functional spine dynamics in neocortical pyramidal neurons of the mouse [J]. J Neurosci, 2019, 39(25):4874-4888. [49] Christopher Gabor, Jennifer Lymer, Anna Phan, et al. Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice [J]. Physiol Behav, 2015, 149:53-60. [50] Wayne R Hawley, Elin M Grissom, Nicole M Moody, et al. Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats [J]. Behav Brain Res, 2014, 262:68-73. [51] Long Nathan, Chhorvann Serey, Kevin Sinchak. 17beta-estradiol rapidly facilitates lordosis through G protein-coupled estrogen receptor 1 (GPER) via deactivation of medial preoptic nucleus mu-opioid receptors in estradiol primed female rats [J]. Horm Behav, 2014, 66(4):663-666. [52] Toran-Allerand C D. Estrogen and the brain: beyond ER-alpha, ER-beta, and 17beta-estradiol [J]. Ann N Y Acad Sci, 2005, 1052:136-144. [53] C Dominique Toran-Allerand, Guan Xiao-ping, Neil Jamens MacLusky, et al. ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury [J]. J Neurosci, 2002, 22(19):8391-8401. [54] Ellis R Levin. Plasma membrane estrogen receptors [J]. Trends Endocrinol Metab, 2009, 20(10):477-482. [55] Couse J F, Kenneth S Korach. Estrogen receptor null mice: what have we learned and where will they lead us? [J]. Endocrine Reviews, 1999, 20(3):358-417. [56] Raegan O'Lone, Martin C Frith, Elinor K Karlsson, et al. Genomic targets of nuclear estrogen receptors [J]. Mol Endocrinol, 2004, 18(8):1859-1875. [57] Michelle L Gottsch, Victor M Navarro, Zhao Zhen, et al. Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways [J]. J Neurosci, 2009, 29(29):9390-9395. [58] Tamara Fernandez-Calero, Gilles Flouriot, Monica Marin. The synonymous Ala87 mutation of estrogen receptor alpha modifies transcriptional activation through both ERE and AP1 sites [J]. Methods in molecular biology (Clifton, NJ), 2016, 1366:287-296. [59] Linda Bjornstrom, Maria Sjoberg. Signal transducers and activators of transcription as downstream targets of nongenomic estrogen receptor actions [J]. Mol Endocrinol, 2002, 16(10):2202-2214. [60] 刘杨,沈丽霞. 阿尔茨海默病治疗中相关雌激素信号途径的研究进展 [J]. 神经药理学报. 2015, 5(02):43-54. [61] Teresa A Milner, Kehinde Ayoola, Carrie T Drake, et al. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation [J]. J Comp Neurol, 2005, 491(2):81-95. [62] Teresa A Milner, Bruce S McEwen, Shinji Hayashi, et al. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites [J]. J Comp Neurol, 2001, 429(3):355-371. [63] Gu Yu, Chen Tian-xiang, Elena Lopez, et al. The therapeutic target of estrogen receptor-alpha36 in estrogen-dependent tumors [J]. J Translational Medicine, 2014, 12:16. [64] Matthias Barton, Edward J Filardo, Stephen J Lolait, et al. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives [J]. J Steroid Biochem Mol Biol, 2018, 176:4-15. [65] Kim C K, Torcaso A, Asimes A, et al. Structural and functional characteristics of oestrogen receptor beta splice variants: Implications for the ageing brain [J]. J Neuroendocrinol, 2018, 30(2):12488. [66] Jolanta Saczko, Michel Olga, Agnieszka Chwilkowska, et al. Estrogen receptors in cell membranes: regulation and signaling [J]. Advances in Anatomy, Embryology, and Cell Biology, 2017, 227:93-105. [67] Ralf Losel, Martin Wehling. Nongenomic actions of steroid hormones [J]. Nature Reviews Molecular Cell Biology, 2003, 4(1):46-56. [68] Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms [J]. Advances in Protein Chemistry and Structural Biology, 2019, 116:135-170. [69] Meharvan Singh, Gyorgy Setalo Jr, Guan Xiao-ping, et al. Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice [J]. J Neurosci, 2000, 20(5):1694-1700. [70] Meharvan Singh, Gyorgy Setalo, Guan Xiao-ping, et al. Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways [J]. J Neurosci, 1999, 19(4):1179-1188. [71] Linda Bjornstrom, Maria Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes [J]. Mol Endocrinol, 2005, 19(4):833-842. [72] Michael J Haas, Prafull Raheja, Sarada Jaimungal, et al. Estrogen-dependent inhibition of dextrose-induced endoplasmic reticulum stress and superoxide generation in endothelial cells [J]. Free Radical Biology & Medicine, 2012, 52(11-12):2161-2167. [73] Kelsey A Rankin, Mei Feng, Kicheol Kim, et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors [J]. J Neurosci, 2019, 39(12):2184-2194. [74] Marcela Bennesch, Didier Picard. Minireview: Tipping the balance: ligand-independent activation of steroid receptors [J]. Mol Endocrinol, 2015, 29(3):349-363. [75] Stephanie M Fernandez, Michael C Lewis, Angela S Pechenino, et al. Estradiol-induced enhancement of object memory consolidation involves hippocampal extracellular signal-regulated kinase activation and membrane-bound estrogen receptors [J]. J Neurosci, 2008, 28(35):8660-8667. [76] Lu Yu-jiao, Gangahara R Sareddy, Wang Jing, et al. Neuron-derived estrogen regulates synaptic plasticity and memory [J]. J Neurosci, 2019, 39(15):2792-2809. [77] Britta S Nelson, Katelyn L Black, Jill Daniel. Circulating estradiol regulates brain-derived estradiol via actions at GnRH receptors to impact memory in ovariectomized rats [J]. eNeuro, 2016, 3(6):0321-16. [78] Krista A Mitchnick, Ari L Mendell, Cassidy E Wideman, et al. Dissociable involvement of estrogen receptors in perirhinal cortex-mediated object-place memory in male rats [J]. Psychoneuroendocrinology, 2019, 107:98-108. [79] Daniel M Vahaba, Luke Remage-Healey. Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds [J]. Horm Behav, 2018, 104:77-87. [80] Yuko Hara, Johanna Crimins, Rishi Puri, et al. Estrogen alters the synaptic distribution of Phospho-GluN2B in the dorsolateral prefrontal cortex while promoting working memory in aged rhesus monkeys [J]. Neuroscience, 2018, 394:303-315. [81] Martin S J, Grimwood P D, Morris R G. Synaptic plasticity and memory: an evaluation of the hypothesis [J]. Annu Rev Neurosci, 2000, 23:649-711. [82] Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain [J]. Nature Reviews Neuroscience, 2009, 10(9):647-658. [83] Abbott L F, Sacha B Nelson. Synaptic plasticity: taming the beast [J]. Nature Neuroscience, 2000, 3 Suppl:1178-1183. [84] Ami Citri, Robert C Malenka. Synaptic plasticity: multiple forms, functions, and mechanisms [J]. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 2008, 33(1):18-41. [85] Tavosanis G. Dendritic structural plasticity [J]. Dev Neurobiol, 2012, 72(1):73-86. [86] William A Catterall, Alexandra P Few. Calcium channel regulation and presynaptic plasticity [J]. Neuron, 2008, 59(6):882-901. [87] Olivia R Buonarati, Erik A Hammes, Jake Watson, et al. Mechanisms of postsynaptic localization of AMPA-type glutamate receptors and their regulation during long-term potentiation [J]. Science Signaling, 2019, 12(562). [88] Yoshihisa Nakahata, Yasuda Ryohei. Plasticity of spine structure: local signaling, translation and cytoskeletal reorganization [J]. Frontiers in Synaptic Neuroscience, 2018, 10:29. [89] Imre Farkas, Flora Balint, Erzsebet Farkas, et al. Estradiol increases glutamate and GABA neurotransmission into GnRH neurons via retrograde NO-signaling in proestrous mice during the positive estradiol feedback period [J]. eNeuro, 2018, 5(4):0057. [90] Joseph G Oberlander, Catherine S Woolley. 17beta-Estradiol Acutely Potentiates Glutamatergic Synaptic Transmission in the Hippocampus through Distinct Mechanisms in Males and Females [J]. J Neurosci, 2016, 36(9):2677-2690. [91] Mylene Potier, Francois Georges, Laurent Brayda-Bruno, et al. Temporal memory and its enhancement by estradiol requires surface dynamics of hippocampal CA1 n-methyl-d-aspartate receptors [J]. Biol Psychiatry, 2016, 79(9):735-745. [92] Jennifer J Tuscher, Victoria Luine, Maya Frankfurt, et al. Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus [J]. J Neurosci, 2016, 36(5):1483-1489. [93] Luis F Jacome, Ketti Barateli, Dina Buitrago, et al. Gonadal Hormones Rapidly Enhance Spatial Memory and Increase Hippocampal Spine Density in Male Rats [J]. Endocrinology, 2016, 157(4):1357-1362. [94] Victoria Ho, Ji-Ann Lee, Kelsey C Martin. The cell biology of synaptic plasticity [J]. Science, 2011, 334(6056):623-628. [95] Yoshitaka Hasegawa, Yasushi Hojo, Hiroki Kojima, et al. Estradiol rapidly modulates synaptic plasticity of hippocampal neurons: Involvement of kinase networks [J]. Brain Res, 2015, 1621:147-161. [96] Ricardo Vierk, Gunter Glassmeier, Zhou Le-pu, et al. Aromatase inhibition abolishes LTP generation in female but not in male mice [J]. J Neurosci, 2012, 32(24):8116-8126. [97] Liisa A M Galea, Karyn M Frick, Elizabeth Hampson, et al. Why estrogens matter for behavior and brain health [J]. Neurosci Biobehav Rev, 2017, 76(Pt B):363-379. [98] Christian B Wade, Daniel M Dorsa. Estrogen activation of cyclic adenosine 5'-monophosphate response element-mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway [J]. Endocrinology, 2003, 144(3):832-838. [99] Daisaku Yokomaku, Tadahiro Numakawa, Yumiko Numakawa, et al. Estrogen enhances depolarization-induced glutamate release through activation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase in cultured hippocampal neurons [J]. Mol Endocrinol, 2003, 17(5):831-844. [100] Yasutomo Kuroki, Kouji Fukushima, Yasunari Kanda, et al. Putative membrane-bound estrogen receptors possibly stimulate mitogen-activated protein kinase in the rat hippocampus [J]. Eur J Pharmacol, 2000, 400(2-3):205-209. [101] Eniko A Kramar, Lulu Y Chen, Nicholas J Brandon, et al. Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity [J]. J Neurosci, 2009, 29(41):12982-12993. [102] Hammond R, Mauk R, Ninaci D, et al. Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats [J]. Horm Behav, 2009, 56(3):309-314. [103] Zhao Yan-gang, He Li, Zhang Yuan-yuan, et al. Estrogen receptor alpha and beta regulate actin polymerization and spatial memory through an SRC-1/mTORC2-dependent pathway in the hippocampus of female mice [J]. J Steroid Biochem Mol Biol, 2017, 174:96-113. [104] Marissa I Boulware, John D Heisler, Karyn M Frick. The memory-enhancing effects of hippocampal estrogen receptor activation involve metabotropic glutamate receptor signaling [J]. J Neurosci, 2013, 33(38):15184-15194. [105] Marissa I Boulware, Jason P Weick, Bryan R Becklund, et al. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein [J]. J Neurosci, 2005, 25(20):5066-5078. [106] Britta S Nelson, Rachel C Springer, Jill M Daniel. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats [J]. Psychopharmacology, 2014, 231(5):899-907. [107] Pablo Mendez, Inigo Azcoitia, Luis M Garcia-Segura. Estrogen receptor alpha forms estrogen-dependent multimolecular complexes with insulin-like growth factor receptor and phosphatidylinositol 3-kinase in the adult rat brain [J]. Brain Research Molecular Brain Research, 2003, 112(1-2):170-176. [108] Pablo Mendez, Luis Miguel Garcia-Segura. Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells [J]. Endocrinology, 2006, 147(6):3027-3039. [109] Ma Z Q, Santagati S, Cesare Patrone, et al. Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastoma cell line SK-ER3 [J]. Mol Endocrinol, 1994, 8(7):910-918. [110] Maria Angeles Arevalo, Inigo Azcoitia, Ignacio Gonzalez-Burgos, et al. Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol [J]. Horm Behav, 2015, 74:19-27. [111] Xu Wen, Cao Jian, Zhou Yan, et al. GPR30 activation improves memory and facilitates DHPG-induced LTD in the hippocampal CA3 of middle-aged mice [J]. Neurobiology of Learning And Memory, 2018, 149:10-19. [112] Kelsy Sharice Jean Ervin, Erin Mulvale, Nicola Gallagher, et al. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor alpha or beta, rapidly enhances social learning [J]. Psychoneuroendocrinology, 2015, 58:51-66. [113] Ashley M Fortress, Jaekyoon Kim, Rachel Poole, et al. 17beta-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice [J]. Learning & Memory (Cold Spring Harbor, NY), 2014, 21(9):457-467. [114] Zhao Z, Fan L, Fortress A M, et al. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition [J]. J Neurosci, 2012, 32(7):2344-2351. [115] Lan Yu-Long, Zhao Jie, Li Shao. Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer's disease [J]. J Alzheimers Dis, 2015, 43(4):1137-1148. [116] Zhao Li-qin, Sarah K Woody, Anindit Chhibber. Estrogen receptor beta in Alzheimer's disease: From mechanisms to therapeutics [J]. Ageing Res Rev, 2015, 24(Pt B):178-190. [117] Anna E Tschiffely, Rosemary A Schuh, Katalin Prokai-Tatrai, et al. A comparative evaluation of treatments with 17beta-estradiol and its brain-selective prodrug in a double-transgenic mouse model of Alzheimer's disease [J]. Horm Behav, 2016, 83:39-44. [118] Yan Wen-hao, Wu Jun, Song Bo, et al. Treatment with a brain-selective prodrug of 17beta-estradiol improves cognitive function in Alzheimer's disease mice by regulating klf5-NF-kappaB pathway [J]. Naunyn-Schmiedeberg's Archives Of Pharmacology, 2019, 392(7):879-886. [119] Chamniansawat S, Sawatdiyaphanon C. Age-related memory impairment associated with decreased endogenous estradiol in the hippocampus of female rats [J]. International J Toxicology, 2018, 37(3):207-215. [120] Dennis J Selkoe, Yamazaki T, Martin Citron, et al. The role of APP processing and trafficking pathways in the formation of amyloid beta-protein [J]. Ann N Y Acad Sci, 1996, 777(1): 57-64. [121] Jaesuk Yun, In Jun Yeo, Chul Ju Hwang, et al. Estrogen deficiency exacerbates Abeta-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-kB activation in ovariectomized mice [J]. Brain Behav Immun, 2018, 73: 282-293. [122] Janine Prange-Kiel, Danuta A Dudzinski, Felicitas Prols, et al. Aromatase Expression in the Hippocampus of AD Patients and 5xFAD Mice [J]. Neural plasticity, 2016, 2016: 9802086. [123] Cassia R Overk, Lu Pei-yi, Wang Yue-ting, et al. Effects of aromatase inhibition versus gonadectomy on hippocampal complex amyloid pathology in triple transgenic mice [J]. Neurobiology of Disease, 2012, 45(1):479-487. [124] Song Y, Lu Y, Liang Z, et al. Association between rs10046, rs1143704, rs767199, rs727479, rs1065778, rs1062033, rs1008805, and rs700519 polymorphisms in aromatase (CYP19A1) gene and Alzheimer's disease risk: a systematic review and meta-analysis involving 11,051 subjects [J]. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2019. [125] Zheng Jia-qiang, Yan Hua-cheng, Shi Lei, et al. The CYP19A1 rs3751592 variant confers susceptibility to Alzheimer disease in the Chinese Han population [J]. Medicine, 2016, 95(35):e4742. [126] Tang Ying, Min Zhuo, Xiang Xiao-jiao, et al. Estrogen-related receptor alpha is involved in Alzheimer's disease-like pathology [J]. Exp Neurol, 2018, 305:89-96. [127] Chul Ju Hwang, Hyung-Mun Yun, Kyung-Ran Park, et al. Memory Impairment in Estrogen Receptor alpha Knockout Mice Through Accumulation of Amyloid-beta Peptides [J]. Mol Neurobiol, 2015, 52(1):176-186. [128] Lai Yu-jie, Zhu Bing-lin, Sun Fei, et al. Estrogen receptor alpha promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice [J]. Aging Cell, 2019, 18(4):e12961. [129] Naoko Honma, Shijehira Saji, Tetuo Mikami, et al. Estrogen-Related Factors in the Frontal Lobe of Alzheimer's Disease Patients and Importance of Body Mass Index [J]. Sci Rep, 2017, 7(1):726. [130] Long Jian-gang, He Ping, Shen Yong, et al. New evidence of mitochondria dysfunction in the female Alzheimer's disease brain: deficiency of estrogen receptor-beta [J]. J Alzheimers Dis, 2012, 30(3):545-558. [131] Zhao Li-qin, Mao Zi-su, Chen Shu-hua, et al. Early intervention with an estrogen receptor beta-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer's disease [J]. J Alzheimers Dis, 2013, 37(2):403-419. [132] Sonia George, Geraldine H Petit, Gunnar Keppler Gouras, et al. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor beta agonists moderate cognitive deficits and amyloid-beta levels in a mouse model of Alzheimer's disease [J]. ACS Chemical Neuroscience, 2013, 4(12):1537-1548. [133] Liu Fang-fang, Xiong Yan-si, Zhu Ling-qiang, et al. Opposite effects of two estrogen receptors on tau phosphorylation through disparate effects on the miR-218/PTPA pathway [J]. Aging Cell, 2015, 14(5):867-877. [134] Takashi Kubota, Hiroshi Matsumoto, Yutaka Kirino. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer's disease [J]. J Pharmacological Sciences, 2016, 131(3):219-222. [135] Li Kai-xiu, Sun Qin, Wei Ling-ling, et al. ERalpha gene promoter methylation in cognitive function and quality of life of patients with Alzheimer disease [J]. J Geriatric Psychiatry And Neurology, 2019, 32(4):221-228. [136] Meharvan Singh, Su Chang. Progesterone and neuroprotection [J]. Horm Behav, 2013, 63(2):284-290. [137] Cai Yi, Cory Chew, Fernando Munoz, et al. Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons [J]. Dev Neurobiol, 2017, 77(6):691-707. |
[1] | 张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(6): 9-20. |
[2] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[3] | 黄蕊,杨翠翠,张兰. 二苯乙烯苷对APP/PS1 双转基因小鼠学习记忆及突触可塑性的影响[J]. 神经药理学报, 2018, 8(2): 31-31. |
[4] | 雷曦,王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 基于快速老化模型小鼠SAMP8 的CA-30 抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(2): 50-50. |
[5] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[6] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[7] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[8] | 郭鹏,张巍. 阿尔茨海默病患者睡眠障碍及其与认知障碍关系的研究[J]. 神经药理学报, 2018, 8(2): 61-61. |
[9] | 连腾宏,李少武,余秋瑾,等. 阿尔茨海默病伴发嗅觉障碍的临床特点及静息态功能核磁共振成像的研究[J]. 神经药理学报, 2018, 8(2): 62-62. |
[10] | 金朝,郭鹏,左丽君,等. 阿尔茨海默病患者视网膜纤维层厚度与临床症状关系[J]. 神经药理学报, 2018, 8(2): 69-69. |
[11] | 常福厚,白图雅,吕晓丽,胡玉霞,李君,林楠,周树宏. 中蒙药对老年性痴呆治疗的研究进展[J]. 神经药理学报, 2018, 8(2): 73-73. |
[12] | 王同兴,韩 露,程肖蕊,周文霞,张永祥. 基于神经内分泌免疫调节分子网络的防治阿尔茨海默病药物新靶点的探索性研究[J]. 神经药理学报, 2018, 8(2): 76-76. |
[13] | 林志彬. 灵芝的抗衰老与抗阿尔茨海默病的药理研究进展[J]. 神经药理学报, 2018, 8(1): 9-15. |
[14] | 刘诺,王真真,陈乃宏. 肠道菌群在阿尔茨海默病发病中的作用[J]. 神经药理学报, 2017, 7(5): 28-. |
[15] | 侯文书,张力. 中药有效成分治疗阿尔茨海默病的作用靶点研究进展[J]. 神经药理学报, 2017, 7(5): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||